Scientific Publications

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis blandit elit metus, mattis consectetur eros fermentum id. Cras lorem purus, finibus vel aliquam ac, porta in libero. Cras lorem purus, finibus vel aliquam ac, porta in libero.

  • Results Per Page

322 Results

2019

Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation

Michelle M Clark, Amber Hildreth, Sergey Batalov, Yan Ding, Shimul Chowdhury, Kelly Watkins, Katarzyna Ellsworth, Brandon Camp, Cyrielle I Kint, Calum Yacoubian 5, Lauge Farnaes, Matthew N Bainbridge, Curtis Beebe, Joshua J A Braun, Margaret Bray, Jeanne Carroll, Julie A Cakici, Sara A Caylor, Christina Clarke, Mitchell P Creed, Jennifer Friedman, Alison Frith, Richard Gain, Mary Gaughran, Shauna George, Sheldon Gilmer, Joseph Gleeson, Jeremy Gore, Haiying Grunenwald, Raymond L Hovey, Marie L Janes, Kejia Lin, Paul D McDonagh, Kyle McBride, Patrick Mulrooney, Shareef Nahas, Daeheon Oh, Albert Oriol, Laura Puckett, Zia Rady, Martin G Reese, Julie Ryu, Lisa Salz, Erica Sanford, Lawrence Stewart, Nathaly Sweeney, Mari Tokita, Luca Van Der Kraan, Sarah White, Kristen Wigby, Brett Williams, Terence Wong, Meredith S Wright, Catherine Yamada, Peter Schols, John Reynders, Kevin Hall, David Dimmock, Narayanan Veeraraghavan, Thomas Defay 8, Stephen F Kingsmore

Sci Transl Med. 2019 Apr 24;11(489):eaat6177. doi: 10.1126/scitranslmed.aat6177. ABSTRACT By informing timely targeted treatments, rapid whole-genome sequencing can improve the outcomes of seriously ill children with genetic diseases, particularly infants in neonatal and pediatric intensive care units (ICUs). The need for highly qualified professionals to decipher results, however, precludes widespread implementation. We describe a platform for population-scale, provisional diagnosis of genetic diseases with automated phenotyping and interpretation. Genome sequencing was expedited by bead-based genome library preparation directly from blood samples and sequencing of paired 100-nt reads in 15.5 hours. Clinical natural language processing (CNLP) automatically extracted children’s deep phenomes from electronic health records with 80% precision and 93% recall. In 101 children with 105 genetic diseases, a mean of 4.3 CNLP-extracted phenotypic features matched the expected phenotypic features of those diseases, compared with a match of 0.9 phenotypic features used in manual interpretation. We automated provisional diagnosis by combining the ranking of the similarity of a patient’s CNLP phenome with respect to the expected phenotypic features of all genetic diseases, together with the ranking of the pathogenicity of all of the patient’s genomic variants. Automated, retrospective diagnoses concurred well with expert manual interpretation (97% recall and 99% precision in 95 children with 97 genetic diseases). Prospectively, our platform correctly diagnosed three of seven seriously ill ICU infants (100% precision and recall) with a mean time saving of 22:19 hours. In each case, the diagnosis affected treatment. Genome sequencing with automated phenotyping and interpretation in a median of 20:10 hours may increase adoption in ICUs and, thereby, timely implementation of precise treatments. PMID:31019026 | DOI:10.1126/scitranslmed.aat6177

April 26, 2019
Infant MortalityRare Disease

Effect of Sociodemographic Factors on Uptake of a Patient-Facing Information Technology Family Health History Risk Assessment Platform

Wu RR, Myers RA, Buchanan AH, Dimmock D, Fulda KG, Haller IV, Haga SB, Harry ML, McCarty C, Neuner J, Rakhra-Burris T, Sperber N, Voils CI, Ginsburg GS, Orlando LA.

Appl Clin Inform. 2019 Mar;10(2):180-188. doi: 10.1055/s-0039-1679926. Epub 2019 Mar 13. ABSTRACT OBJECTIVE: Investigate sociodemographic differences in the use of a patient-facing family health history (FHH)-based risk assessment platform. METHODS: In this large multisite trial with a diverse patient population, we evaluated the relationship between sociodemographic factors and FHH health risk assessment uptake using an information technology (IT) platform. The entire study was administered online, including consent, baseline survey, and risk assessment completion. We used multivariate logistic regression to model effect of sociodemographic factors on study progression. Quality of FHH data entered as defined as relatives: (1) with age of onset reported on relevant conditions; (2) if deceased, with cause of death and (3) age of death reported; and (4) percentage of relatives with medical history marked as unknown was analyzed using grouped logistic fixed effect regression. RESULTS: A total of 2,514 participants consented with a mean age of 57 and 10.4% minority. Multivariate modeling showed that progression through study stages was more likely for younger (p-value = 0.005), more educated (p-value = 0.004), non-Asian (p-value = 0.009), and female (p-value = 0.005) participants. Those with lower health literacy or information-seeking confidence were also less likely to complete the study. Most significant drop-out occurred during the risk assessment completion phase. Overall, quality of FHH data entered was high with condition’s age of onset reported 87.85%, relative’s cause of death 85.55% and age of death 93.76%, and relative’s medical history marked as unknown 19.75% of the time. CONCLUSION: A demographically diverse population was able to complete an IT-based risk assessment but there were differences in attrition by sociodemographic factors. More attention should be given to ensure end-user functionality of health IT and leverage electronic medical records to lessen patient burden. PMID:30866001 | PMC:PMC6415985 | DOI:10.1055/s-0039-1679926

March 14, 2019

Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy

Friedman J, Smith DE, Issa MY, Stanley V, Wang R, Mendes MI, Wright MS, Wigby K, Hildreth A, Crawford JR, Koehler AE, Chowdhury S, Nahas S, Zhai L, Xu Z, Lo WS, James KN, Musaev D, Accogli A, Guerrero K, Tran LT, Omar TEI, Ben-Omran T, Dimmock D, Kingsmore SF, Salomons GS, Zaki MS, Bernard G, Gleeson JG. 

Nat Commun. 2019 Feb 12;10(1):707. doi: 10.1038/s41467-018-07067-3. ABSTRACT Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes. PMID:30755602 | PMC:PMC6372641 | DOI:10.1038/s41467-018-07067-3

February 14, 2019

2018

Blacklisting variants common in private cohorts but not in public databases optimizes human exome analysis

Maffucci P, Bigio B, Rapaport F, Cobat A, Borghesi A, Lopez M, Patin E, Bolze A, Shang L, Bendavid M, Scott EM, Stenson PD, Cunningham-Rundles C, Cooper DN, Gleeson JG, Fellay J, Quintana-Murci L, Casanova JL, Abel L, Boisson B, Itan Y.

Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):950-959. doi: 10.1073/pnas.1808403116. Epub 2018 Dec 27. ABSTRACT Computational analyses of human patient exomes aim to filter out as many nonpathogenic genetic variants (NPVs) as possible, without removing the true disease-causing mutations. This involves comparing the patient’s exome with public databases to remove reported variants inconsistent with disease prevalence, mode of inheritance, or clinical penetrance. However, variants frequent in a given exome cohort, but absent or rare in public databases, have also been reported and treated as NPVs, without rigorous exploration. We report the generation of a blacklist of variants frequent within an in-house cohort of 3,104 exomes. This blacklist did not remove known pathogenic mutations from the exomes of 129 patients and decreased the number of NPVs remaining in the 3,104 individual exomes by a median of 62%. We validated this approach by testing three other independent cohorts of 400, 902, and 3,869 exomes. The blacklist generated from any given cohort removed a substantial proportion of NPVs (11-65%). We analyzed the blacklisted variants computationally and experimentally. Most of the blacklisted variants corresponded to false signals generated by incomplete reference genome assembly, location in low-complexity regions, bioinformatic misprocessing, or limitations inherent to cohort-specific private alleles (e.g., due to sequencing kits, and genetic ancestries). Finally, we provide our precalculated blacklists, together with ReFiNE, a program for generating customized blacklists from any medium-sized or large in-house cohort of exome (or other next-generation sequencing) data via a user-friendly public web server. This work demonstrates the power of extracting variant blacklists from private databases as a specific in-house but broadly applicable tool for optimizing exome analysis. PMID:30591557 | PMC:PMC6338851 | DOI:10.1073/pnas.1808403116

December 29, 2018

Evidence- and consensus-based recommendations for the use of pegvaliase in adults with phenylketonuria

Longo N, Dimmock D, Levy H, Viau K, Bausell H, Bilder DA, Burton B, Gross C, Northrup H, Rohr F, Sacharow S, Sanchez-Valle A, Stuy M, Thomas J, Vockley J, Zori R, Harding CO.

Genet Med. 2019 Aug;21(8):1851-1867. doi: 10.1038/s41436-018-0403-z. Epub 2018 Dec 14. ABSTRACT PURPOSE: Phenylketonuria (PKU) is a rare metabolic disorder that requires life-long management to reduce phenylalanine (Phe) concentrations within the recommended range. The availability of pegvaliase (PALYNZIQ™, an enzyme that can metabolize Phe) as a new therapy necessitates the provision of guidance for its use. METHODS: A Steering Committee comprising 17 health-care professionals with experience in using pegvaliase through the clinical development program drafted guidance statements during a series of face-to-face meetings. A modified Delphi methodology was used to demonstrate consensus among a wider group of health-care professionals with experience in using pegvaliase. RESULTS: Guidance statements were developed for four categories: (1) treatment goals and considerations prior to initiating therapy, (2) dosing considerations, (3) considerations for dietary management, and (4) best approaches to optimize medical management. A total of 34 guidance statements were included in the modified Delphi voting and consensus was reached on all after two rounds of voting. CONCLUSION: Here we describe evidence- and consensus-based recommendations for the use of pegvaliase in adults with PKU. The manuscript was evaluated against the Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument and is intended for use by health-care professionals who will prescribe pegvaliase and those who will treat patients receiving pegvaliase. PMID:30546086 | PMC:PMC6752676 | DOI:10.1038/s41436-018-0403-z

December 15, 2018

MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, craniofacial and genital features (COFG syndrome)

Rad A, Altunoglu U, Miller R, Maroofian R, James KN, Çağlayan AO, Najafi M, Stanley V, Boustany RM, Yeşil G, Sahebzamani A, Ercan-Sencicek G, Saeidi K, Wu K, Bauer P, Bakey Z, Gleeson JG, Hauser N, Gunel M, Kayserili H, Schmidts M.

J Med Genet. 2019 May;56(5):332-339. doi: 10.1136/jmedgenet-2018-105623. Epub 2018 Nov 28. ABSTRACT BACKGROUND: Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE: A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS: We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION: This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis. PMID:30487245 | PMC:PMC6581149 | DOI:10.1136/jmedgenet-2018-105623

November 30, 2018

Elucidating the molecular pathogenesis of glioma: integrated germline and somatic profiling of a familial glioma case series.

Jacobs DI, Fukumura K, Bainbridge MN, Armstrong GN, Tsavachidis S, Gu X, Doddapaneni HV, Hu J, Jayaseelan JC, Muzny DM, Huse JT, Bondy ML.

Neuro Oncol. 2018 Nov 12;20(12):1625-1633. doi: 10.1093/neuonc/noy119. PMID: 30165405; PMCID: PMC6231201. Abstract Key points: 1. Familial and sporadic gliomas display highly comparable molecular landscapes. 2. Germline and somatic molecular events target common core pathways involved in gliomagenesis. 3. Carriage of germline glioma risk variants is not associated with somatic events in the same gene. PMID: 30165405 | PMCID: PMC6231201 | DOI: 10.1093/neuonc/noy119

November 12, 2018
Gene Discovery

A Screen Using iPSC-Derived Hepatocytes Reveals NAD+ as a Potential Treatment for mtDNA Depletion Syndrome

Jing R, Corbett JL, Cai J, Beeson GC, Beeson CC, Chan SS, Dimmock DP, Lazcares L, Geurts AM, Lemasters JJ, Duncan SA.

Cell Rep. 2018 Nov 6;25(6):1469-1484.e5. doi: 10.1016/j.celrep.2018.10.036. ABSTRACT Patients with mtDNA depletion syndrome 3 (MTDPS3) often die as children from liver failure caused by severe reduction in mtDNA content. The identification of treatments has been impeded by an inability to culture and manipulate MTDPS3 primary hepatocytes. Here we generated DGUOK-deficient hepatocyte-like cells using induced pluripotent stem cells (iPSCs) and used them to identify drugs that could improve mitochondrial ATP production and mitochondrial function. Nicotinamide adenine dinucleotide (NAD) was found to improve mitochondrial function in DGUOK-deficient hepatocyte-like cells by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). NAD treatment also improved ATP production in MTDPS3-null rats and in hepatocyte-like cells that were deficient in ribonucleoside-diphosphate reductase subunit M2B (RRM2B), suggesting that it could be broadly effective. Our studies reveal that DGUOK-deficient iPSC-derived hepatocytes recapitulate the pathophysiology of MTDPS3 in culture and can be used to identify therapeutics for mtDNA depletion syndromes. PMID:30404003 | PMC:PMC6289059 | DOI:10.1016/j.celrep.2018.10.036

November 8, 2018

Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease

Gross AM, Ajay SS, Rajan V, Brown C, Bluske K, Burns NJ, Chawla A, Coffey AJ, Malhotra A, Scocchia A, Thorpe E, Dzidic N, Hovanes K, Sahoo T, Dolzhenko E, Lajoie B, Khouzam A, Chowdhury S, Belmont J, Roller E, Ivakhno S, Tanner S, McEachern J, Hambuch T, Eberle M, Hagelstrom RT, Bentley DR, Perry DL, Taft RJ.

Genet Med. 2019 May;21(5):1121-1130. doi: 10.1038/s41436-018-0295-y. Epub 2018 Oct 8. ABSTRACT PURPOSE: Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test. METHODS: We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases. RESULTS: We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs. CONCLUSION: Robust identification of CNVs by GS is possible within a clinical testing environment. PMID:30293986 | PMC:PMC6752263 | DOI:10.1038/s41436-018-0295-y

October 9, 2018

Heterozygous WNT1 variant causing a variable bone phenotype

Alhamdi S, Lee YC, Chowdhury S, Byers PH, Gottschalk M, Taft RJ, Joeng KS, Lee BH, Bird LM.

Am J Med Genet A. 2018 Nov;176(11):2419-2424. doi: 10.1002/ajmg.a.40347. Epub 2018 Sep 24. ABSTRACT Osteogenesis imperfecta (OI) is a family of heritable disorders of bone fragility. Most individuals with OI have mutations in the genes encoding type I collagen; at least 17 other genes have been associated with OI. Biallelic loss-of-function mutations in WNT1 cause severe OI. Heterozygous missense variants in WNT1 are responsible for early-onset osteoporosis with variable bone phenotypes. Herein, we report a third-generation family with four affected individuals, some presenting with multiple low-impact fractures in childhood and others presenting with early-onset osteoporosis without a striking fracture history. A WNT1 variant (c. 1051 > C; p.Trp351Arg) was identified in the proband and segregated with a bone phenotype in three additional family members, consistent with autosomal dominant inheritance. In the proband, whole genome sequencing also revealed a de novo duplication (434 kb) of 22q11.2 that involves 25 genes, 4 of which are associated with human disease when haploinsufficient. Though smaller than the typical (1.5 Mb) 22q11.2 duplication, the duplication in the proband may be responsible for additional nonosseous aspects of his phenotype (hypotonia, developmental delay, small genitalia, strabismus, and depression in preadolescence). This case demonstrates the variability of bone phenotype conferred by a WNT1 variant and extends the spectrum of bone phenotypes associated with heterozygous WNT1 mutations. PMID:30246918 | PMC:PMC6289778 | DOI:10.1002/ajmg.a.40347

September 25, 2018

Publications Question?

Contact Us About BeginNGS