Gene Discovery

Hunting for New Therapies

There is a treasure trove of valuable information in both the mapped and unmapped reads of the genome.

Gene Discovery involves identifying novel genes implicated in causing rare disease, developing methods to identify patient’s predisposition to a rare disease and building the knowledge base to improve clinical management of novel genetic disease.

At RCIGM, this work is led by Matthew Bainbridge, PhD, Assistant Director of Translational Research. His team develops novel analysis techniques to squeeze every last bit of information from WGS and to attempt to identify uncommon disease mechanisms (such as ALU insertions and deep intronic mutations) in the pediatric patient population. 

Bioinformatic analysis of Whole Genome Sequencing (WGS) data is used to gain a better understanding of the mechanisms by which pathogenic genomic variants contribute to the development of rare diseases.

Traditional wet-lab modeling of novel diseases is used to functionalize variants of uncertain significance.

Research Projects

Several grant funded research projects are currently under Dr. Bainbridge’s direction:

  • Oligogenic Models of Cardiomyopathy
    The goal is to identify synergistic and modifier mutations that impact structural cardiomyopathies.  Bioinformatically identified variants are prioritized and then functionally tested by Dr. Neil Chi at UC San Diego. Learn More

Matthew Bainbridge, PhD

RCIGM Assistant Director of Translational Research

Publications

Ann Clin Transl Neurol. 2021 Oct 18. doi: 10.1002/acn3.51470. Online ahead of print.

ABSTRACT

OBJECTIVE: To delineate the full phenotypic spectrum of BCS1L-related disease, provide better understanding of the genotype-phenotype correlations and identify reliable prognostic disease markers.

METHODS: We performed a retrospective multinational cohort study of previously unpublished patients followed in 15 centres from 10 countries. Patients with confirmed biallelic pathogenic BCS1L variants were considered eligible. Clinical, laboratory, neuroimaging and genetic data were analysed. Patients were stratified into different groups based on the age of disease onset, whether homozygous or compound heterozygous for the c.232A>G (p.Ser78Gly) variant, and those with other pathogenic BCS1L variants.

RESULTS: Thirty-three patients were included. We found that growth failure, lactic acidosis, tubulopathy, hepatopathy and early death were more frequent in those with disease onset within the first month of life. In those with onset after 1 month, neurological features including movement disorders and seizures were more frequent. Novel phenotypes, particularly involving movement disorder, were identified in this group. The presence of the c.232A>G (p.Ser78Gly) variant was associated with significantly worse survival and exclusively found in those with disease onset within the first month of life, whilst other pathogenic BCS1L variants were more frequent in those with later symptom onset.

INTERPRETATION: The phenotypic spectrum of BCS1L-related disease comprises a continuum of clinical features rather than a set of separate syndromic clinical identities. Age of onset defines BCS1L-related disease clinically and early presentation is associated with poor prognosis. Genotype correlates with phenotype in the presence of the c.232A>G (p.Ser78Gly) variant.

PMID:34662929 | DOI:10.1002/acn3.51470

Sci Rep. 2021 Aug 24;11(1):17115. doi: 10.1038/s41598-021-96374-9.

ABSTRACT

Heat shock proteins are involved in the response to stress including activation of the immune response. Elevated circulating heat shock proteins are associated with spontaneous preterm birth (SPTB). Intracellular heat shock proteins act as multifunctional molecular chaperones that regulate activity of nuclear hormone receptors. Since SPTB has a significant genetic predisposition, our objective was to identify genetic and transcriptomic evidence of heat shock proteins and nuclear hormone receptors that may affect risk for SPTB. We investigated all 97 genes encoding members of the heat shock protein families and all 49 genes encoding nuclear hormone receptors for their potential role in SPTB susceptibility. We used multiple genetic and genomic datasets including genome-wide association studies (GWASs), whole-exome sequencing (WES), and placental transcriptomics to identify SPTB predisposing factors from the mother, infant, and placenta. There were multiple associations of heat shock protein and nuclear hormone receptor genes with SPTB. Several orthogonal datasets supported roles for SEC63, HSPA1L, SACS, RORA, and AR in susceptibility to SPTB. We propose that suppression of specific heat shock proteins promotes maintenance of pregnancy, whereas activation of specific heat shock protein mediated signaling may disturb maternal-fetal tolerance and promote labor.

PMID:34429451 | DOI:10.1038/s41598-021-96374-9

Want to Learn More?