Gene Discovery

Hunting for New Therapies

There is a treasure trove of valuable information in both the mapped and unmapped reads of the genome.

Gene Discovery involves identifying novel genes implicated in causing rare disease, developing methods to identify patient’s predisposition to a rare disease and building the knowledge base to improve clinical management of novel genetic disease.

At RCIGM, this work is led by Matthew Bainbridge, PhD, Assistant Director of Translational Research. His team develops novel analysis techniques to squeeze every last bit of information from WGS and to attempt to identify uncommon disease mechanisms (such as ALU insertions and deep intronic mutations) in the pediatric patient population. 

Bioinformatic analysis of Whole Genome Sequencing (WGS) data is used to gain a better understanding of the mechanisms by which pathogenic genomic variants contribute to the development of rare diseases.

Traditional wet-lab modeling of novel diseases is used to functionalize variants of uncertain significance.

Research Projects

Several grant funded research projects are currently under Dr. Bainbridge’s direction:

  • Oligogenic Models of Cardiomyopathy
    The goal is to identify synergistic and modifier mutations that impact structural cardiomyopathies.  Bioinformatically identified variants are prioritized and then functionally tested by Dr. Neil Chi at UC San Diego. Learn More

Matthew Bainbridge, PhD

RCIGM Assistant Director of Translational Research

Publications

PLoS One. 2023 Jan 26;18(1):e0279430. doi: 10.1371/journal.pone.0279430. eCollection 2023.

ABSTRACT

Short Tandem Repeats (STRs) have been found to play a role in a myriad of complex traits and genetic diseases. We examined the variability in the lengths of over 850,000 STR loci in 996 children with suspected genetic disorders and 1,178 parents across six separate ancestral groups: Africans, Europeans, East Asians, Admixed Americans, Non-admixed Americans, and Pacific Islanders. For each STR locus we compared allele length between and within each ancestry group. In relation to Europeans, admixed Americans had the most similar STR lengths with only 623 positions either significantly expanded or contracted, while the divergence was highest in Africans, with 4,933 chromosomal positions contracted or expanded. We also examined probands to identify STR expansions at known pathogenic loci. The genes TCF4, AR, and DMPK showed significant expansions with lengths 250% greater than their various average allele lengths in 49, 162, and 11 individuals respectively. All 49 individuals containing an expansion in TCF4 and six individuals containing an expansion in DMPK presented with allele lengths longer than the known pathogenic length for these genes. Next, we identified individuals with significant expansions in highly conserved loci across all ancestries. Eighty loci in conserved regions met criteria for divergence. Two of these individuals were found to have exonic STR expansions: one in ZBTB4 and the other in SLC9A7, which is associated with X-linked mental retardation. Finally, we used parent-child trios to detect and analyze de novo mutations. In total, we observed 3,219 de novo expansions, where proband allele lengths are greater than twice the longest parental allele length. This work helps lay the foundation for understanding STR lengths genome-wide across ancestries and may help identify new disease genes and novel mechanisms of pathogenicity in known disease genes.

PMID:36701310 DOI:10.1371/journal.pone.0279430

Brain. 2022 Dec 8:awac461. doi: 10.1093/brain/awac461. Online ahead of print.

NO ABSTRACT

PMID:36477332 DOI:10.1093/brain/awac461

Want to Learn More?

Contact Us About BeginNGS