Scientific Publications

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis blandit elit metus, mattis consectetur eros fermentum id. Cras lorem purus, finibus vel aliquam ac, porta in libero. Cras lorem purus, finibus vel aliquam ac, porta in libero.

  • Results Per Page

210 Results

2022

A genome-wide association study of obstructive heart defects among participants in the National Birth Defects Prevention Study

Rashkin SR, Cleves M, Shaw GM, Nembhard WN, Nestoridi E, Jenkins MM, Romitti PA, Lou XY, Browne ML, Mitchell LE, Olshan AF, Lomangino K, Bhattacharyya S, Witte JS, Hobbs CA; National Birth Defects Prevention Study.

Am J Med Genet A. 2022 Apr 22. doi: 10.1002/ajmg.a.62759. Online ahead of print. ABSTRACT Obstructive heart defects (OHDs) share common structural lesions in arteries and cardiac valves, accounting for ~25% of all congenital heart defects. OHDs are highly heritable, resulting from interplay among maternal exposures, genetic susceptibilities, and epigenetic phenomena. A genome-wide association study was conducted in National Birth Defects Prevention Study participants (Ndiscovery = 3978; Nreplication = 2507), investigating the genetic architecture of OHDs using transmission/disequilibrium tests (TDT) in complete case-parental trios (Ndiscovery_TDT = 440; Nreplication_TDT = 275) and case-control analyses separately in infants (Ndiscovery_CCI = 1635; Nreplication_CCI = 990) and mothers (case status defined by infant; Ndiscovery_CCM = 1703; Nreplication_CCM = 1078). In the TDT analysis, the SLC44A2 single nucleotide polymorphism (SNP) rs2360743 was significantly associated with OHD (pdiscovery = 4.08 × 10-9 ; preplication = 2.44 × 10-4 ). A CAPN11 SNP (rs55877192) was suggestively associated with OHD (pdiscovery = 1.61 × 10-7 ; preplication = 0.0016). Two other SNPs were suggestively associated (p < 1 × 10-6 ) with OHD in only the discovery sample. In the case-control analyses, no SNPs were genome-wide significant, and, even with relaxed thresholds ( × discovery < 1 × 10-5 and preplication < 0.05), only one SNP (rs188255766) in the infant analysis was associated with OHDs (pdiscovery = 1.42 × 10-6 ; preplication = 0.04). Additional SNPs with pdiscovery < 1 × 10-5 were in loci supporting previous findings but did not replicate. Overall, there was modest evidence of an association between rs2360743 and rs55877192 and OHD and some evidence validating previously published findings. PMID:35451555 | DOI:10.1002/ajmg.a.62759

April 22, 2022

Somatic mosaicism reveals clonal distributions of neocortical development

Breuss MW, Yang X, Schlachetzki JCM, Antaki D, Lana AJ, Xu X, Chung C, Chai G, Stanley V, Song Q, Newmeyer TF, Nguyen A, O’Brien S, Hoeksema MA, Cao B, Nott A, McEvoy-Venneri J, Pasillas MP, Barton ST, Copeland BR, Nahas S, Van Der Kraan L, Ding Y; NIMH Brain Somatic Mosaicism Network, Glass CK, Gleeson JG.

Nature. 2022 Apr 20. doi: 10.1038/s41586-022-04602-7. Online ahead of print. ABSTRACT The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain. PMID:35444276 | DOI:10.1038/s41586-022-04602-7

April 20, 2022
Neurogenomics

Best practices for the interpretation and reporting of clinical whole genome sequencing

Austin-Tse CA, Jobanputra V, Perry DL, Bick D, Taft RJ, Venner E, Gibbs RA, Young T, Barnett S, Belmont JW, Boczek N, Chowdhury S, Ellsworth KA, Guha S, Kulkarni S, Marcou C, Meng L, Murdock DR, Rehman AU, Spiteri E, Thomas-Wilson A, Kearney HM, Rehm HL; Medical Genome Initiative*.

NPJ Genom Med. 2022 Apr 8;7(1):27. doi: 10.1038/s41525-022-00295-z. ABSTRACT Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test. PMID:35395838 | DOI:10.1038/s41525-022-00295-z

April 11, 2022
RPM for NICU and PICU

Efficacy of Caffeine in ADCY5-Related Dyskinesia: A Retrospective Study

Méneret A, Mohammad SS, Cif L, Doummar D, DeGusmao C, Anheim M, Barth M, Damier P, Demonceau N, Friedman J, Gallea C, Gras D, Gurgel-Giannetti J, Innes EA, Necpál J, Riant F, Sagnes S, Sarret C, Seliverstov Y, Paramanandam V, Shetty K, Tranchant C, Doulazmi M, Vidailhet M, Pringsheim T, Roze E.

Mov Disord. 2022 Apr 5. doi: 10.1002/mds.29006. Online ahead of print. ABSTRACT BACKGROUND: ADCY5-related dyskinesia is characterized by early-onset movement disorders. There is currently no validated treatment, but anecdotal clinical reports and biological hypotheses suggest efficacy of caffeine. OBJECTIVE: The aim is to obtain further insight into the efficacy and safety of caffeine in patients with ADCY5-related dyskinesia. METHODS: A retrospective study was conducted worldwide in 30 patients with a proven ADCY5 mutation who had tried or were taking caffeine for dyskinesia. Disease characteristics and treatment responses were assessed through a questionnaire. RESULTS: Caffeine was overall well tolerated, even in children, and 87% of patients reported a clear improvement. Caffeine reduced the frequency and duration of paroxysmal movement disorders but also improved baseline movement disorders and some other motor and nonmotor features, with consistent quality-of-life improvement. Three patients reported worsening. CONCLUSION: Our findings suggest that caffeine should be considered as a first-line therapeutic option in ADCY5-related dyskinesia. © 2022 International Parkinson and Movement Disorder Society. PMID:35384065 | DOI:10.1002/mds.29006

April 5, 2022
Genetic Neurologic Disease

El-Hattab-Alkuraya syndrome caused by biallelic WDR45B pathogenic variants: further delineation of the phenotype and genotype

Almannai M, Marafi D, Abdel-Salam GMH, Zaki MS, Duan R, Calame D, Herman I, Levesque FSHA, Elbendary HM, Hegazy I, Chung WK, Kavus H, Saeidi K, Maroofian R, AlHashim A, Al-Otaibi A, Madhi AA, Aboalseood HM, Alasmari A, Houlden H, Gleeson JG, Hunter JV, Posey JE, Lupski JR, El-Hattab AW.

Clin Genet. 2022 Mar 23. doi: 10.1111/cge.14132. Online ahead of print. ABSTRACT Homozygous pathogenic variants in WDR45B were first identified in six subjects from three unrelated families with global development delay, refractory seizures, spastic quadriplegia, and brain malformations. Since the initial report in 2018, no further cases have been described. In this report, we present 12 additional individuals from seven unrelated families and their clinical, radiological, and molecular findings. Six different variants in WDR45B were identified, five of which are novel. Microcephaly and global developmental delay were observed in all subjects, and seizures and spastic quadriplegia in most. Common findings on brain imaging include cerebral atrophy, ex-vacuo ventricular dilatation, brainstem volume loss, and symmetric under-opercularization. El-Hattab-Alkuraya syndrome is associated with a consistent phenotype characterized by early onset cerebral atrophy resulting in microcephaly, developmental delay, spastic quadriplegia, and seizures. The phenotype appears to be more severe among individuals with loss-of-function variants whereas those with missense variants were less severely affected suggesting a potential genotype-phenotype correlation in this disorder. A brain imaging pattern emerges which is consistent among individuals with loss-of-function variants and could potentially alert the neuroradiologists or clinician to consider WDR45B-related El-Hattab-Alkuraya syndrome. This article is protected by copyright. All rights reserved. PMID:35322404 | DOI:10.1111/cge.14132

March 23, 2022
Neurogenomics

Healthcare Professionals’ Attitudes toward Rapid Whole Genome Sequencing in Pediatric Acute Care

Franck LS, Scheurer-Monaghan A, Bupp CP, Fakhoury JD, Hoffmann TJ, Deshpandey M, Arenchild M, Dimmock DP.

Children. 2022; 9(3):357. Abstract

We aimed to characterize knowledge and attitudes about rapid whole genome sequencing (rWGS) implementation of a broad constituency of healthcare professionals at hospitals participating in a statewide initiative to implement rWGS for hospitalized neonates and children up to 18 years of age meeting clinical criteria for testing. We surveyed 307 healthcare professionals from eight hospitals about their knowledge and attitudes regarding rWGS. We examined survey internal reliability using exploratory factor analysis and associations between respondent characteristics and attitudes toward rWGS with linear regression. We thematically analyzed free-text responses. Views about rWGS implementation in respondents’ own setting and respondents’ personal capability to implement rWGS were generally neutral (M = 3.44 (SD = 0.74); M = 3.30 (SD = 0.85), respectively). Views about the potential for rWGS in clinical practice were overall positive (M = 4.12 (SD = 0.57)). The degree of positivity of attitudes about rWGS was strongly influenced by perceived knowledge, clinical or non-clinical role, concerns about future insurance coverage for rWGS as a first-tier test, and future adverse impact of genomics health information on patients or families. We identified several actionable factors influencing attitudes toward rWGS of pediatric healthcare professionals. Expanded education and ongoing implementation research are needed for the full potential of rWGS in pediatrics to be realized.
https://doi.org/10.3390/children9030357

March 4, 2022
RPM for NICU and PICUrWGS

Conventional Therapies Deplete Brain-Infiltrating Adaptive Immune Cells in a Mouse Model of Group 3 Medulloblastoma Implicating Myeloid Cells as Favorable Immunotherapy Targets

Abbas Z, George C, Ancliffe M, Howlett M, Jones AC, Kuchibhotla M, Wechsler-Reya RJ, Gottardo NG, Endersby R.

Front Immunol. 2022 Mar 3;13:837013. doi: 10.3389/fimmu.2022.837013. eCollection 2022. ABSTRACT Medulloblastoma is the most common childhood brain cancer. Mainstay treatments of radiation and chemotherapy have not changed in decades and new treatment approaches are crucial for the improvement of clinical outcomes. To date, immunotherapies for medulloblastoma have been unsuccessful, and studies investigating the immune microenvironment of the disease and the impact of current therapies are limited. Preclinical models that recapitulate both the disease and immune environment are essential for understanding immune-tumor interactions and to aid the identification of new and effective immunotherapies. Using an immune-competent mouse model of aggressive Myc-driven medulloblastoma, we characterized the brain immune microenvironment and changes induced in response to craniospinal irradiation, or the medulloblastoma chemotherapies cyclophosphamide or gemcitabine. The role of adaptive immunity in disease progression and treatment response was delineated by comparing survival outcomes in wildtype C57Bl/6J and in mice deficient in Rag1 that lack mature T and B cells. We found medulloblastomas in wildtype and Rag1-deficient mice grew equally fast, and that craniospinal irradiation and chemotherapies extended survival equally in wildtype and Rag1-deficient mice, suggesting that tumor growth and treatment response is independent of T and B cells. Medulloblastomas were myeloid dominant, and in wildtype mice, craniospinal irradiation and cyclophosphamide depleted T and B cells in the brain. Gemcitabine treatment was found to minimally alter the immune populations in the brain, resulting only in a depletion of neutrophils. Intratumorally, we observed an abundance of Iba1+ macrophages, and we show that CD45high cells comprise the majority of immune cells within these medulloblastomas but found that existing markers are insufficient to clearly delineate resident microglia from infiltrating macrophages. Ultimately, brain resident and peripheral macrophages dominate the brain and tumor microenvironment and are not depleted by standard-of-care medulloblastoma therapies. These populations therefore present a favorable target for immunotherapy in combination with front-line treatments. PMID:35309309 | PMC:PMC8928748 | DOI:10.3389/fimmu.2022.837013

March 3, 2022
Neuro-Oncology

Consolidation of the clinical and genetic definition of a SOX4-related neurodevelopmental syndrome

Angelozzi M, Karvande A, Molin AN, Ritter AL, Leonard JMM, Savatt JM, Douglass K, Myers SM, Grippa M, Tolchin D, Zackai E, Donoghue S, Hurst ACE, Descartes M, Smith K, Velasco D, Schmanski A, Crunk A, Tokita MJ, de Lange IM, van Gassen K, Robinson H, Guegan K, Suri M, Patel C, Bournez M, Faivre L, Tran-Mau-Them F, Baker J, Fabie N, Weaver K, Shillington A, Hopkin RJ, Barge-Schaapveld DQCM, Ruivenkamp CA, Bökenkamp R, Vergano S, Seco Moro MN, Díaz de Bustamante A, Misra VK, Kennelly K, Rogers C, Friedman J, Wigby KM, Lenberg J, Graziano C, Ahrens-Nicklas RC, Lefebvre V.

J Med Genet. 2022 Mar 1:jmedgenet-2021-108375. doi: 10.1136/jmedgenet-2021-108375. Epub ahead of print. PMID: 35232796. Abstract Background: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. Methods: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients’ phenotypes. Results: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. Conclusion: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes. PMID: 35232796 | DOI: 10.1136/jmedgenet-2021-108375

March 1, 2022
Genetic Neurologic DiseaseNeurogenomics

Autosomal Recessive Cerebellar Atrophy and Spastic Ataxia in Patients With Pathogenic Biallelic Variants in GEMIN5

Rajan DS, Kour S, Fortuna TR, Cousin MA, Barnett SS, Niu Z, Babovic-Vuksanovic D, Klee EW, Kirmse B, Innes M, Rydning SL, Selmer KK, Vigeland MD, Erichsen AK, Nemeth AH, Millan F, DeVile C, Fawcett K, Legendre A, Sims D, Schnekenberg RP, Burglen L, Mercier S, Bakhtiari S, Martinez-Salas E, Wigby K, Lenberg J, Friedman JR, Kruer MC, Pandey UB.

Front Cell Dev Biol. 2022 Feb 28;10:783762. doi: 10.3389/fcell.2022.783762. eCollection 2022. ABSTRACT The hereditary ataxias are a heterogenous group of disorders with an increasing number of causative genes being described. Due to the clinical and genetic heterogeneity seen in these conditions, the majority of such individuals endure a diagnostic odyssey or remain undiagnosed. Defining the molecular etiology can bring insights into the responsible molecular pathways and eventually the identification of therapeutic targets. Here, we describe the identification of biallelic variants in the GEMIN5 gene among seven unrelated families with nine affected individuals presenting with spastic ataxia and cerebellar atrophy. GEMIN5, an RNA-binding protein, has been shown to regulate transcription and translation machinery. GEMIN5 is a component of small nuclear ribonucleoprotein (snRNP) complexes and helps in the assembly of the spliceosome complexes. We found that biallelic GEMIN5 variants cause structural abnormalities in the encoded protein and reduce expression of snRNP complex proteins in patient cells compared with unaffected controls. Finally, knocking out endogenous Gemin5 in mice caused early embryonic lethality, suggesting that Gemin5 expression is crucial for normal development. Our work further expands on the phenotypic spectrum associated with GEMIN5-related disease and implicates the role of GEMIN5 among patients with spastic ataxia, cerebellar atrophy, and motor predominant developmental delay. PMID:35295849 | PMC:PMC8918504 | DOI:10.3389/fcell.2022.783762

February 28, 2022
Genetic Neurologic Disease

2022: A pivotal year for diagnosis and treatment of rare genetic diseases

Kingsmore SF

Cold Spring Harb Mol Case Stud. 2022 Feb 25:mcs.a006204. doi: 10.1101/mcs.a006204. Online ahead of print. ABSTRACT The start of 2022 is an inflection point in the development of diagnostics and treatments for rare genetic diseases in prenatal, pediatric, and adult individuals; the theme of this special issue. Here I briefly review recent developments in the latter two aspects of rare genetic disease diagnostics and treatments. PMID:35217563 | DOI:10.1101/mcs.a006204

February 25, 2022
Rare DiseaseRPM for NICU and PICU

Publications Question?