Scientific Publications

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis blandit elit metus, mattis consectetur eros fermentum id. Cras lorem purus, finibus vel aliquam ac, porta in libero. Cras lorem purus, finibus vel aliquam ac, porta in libero.

  • Results Per Page

31 Results


Rapid Whole-Genome Sequencing and Clinical Management in the PICU: A Multicenter Cohort, 2016-2023

Rodriguez KM, Vaught J, Salz L, Foley J, Boulil Z, Van Dongen-Trimmer HM, Whalen D, Oluchukwu O, Liu KC, Burton J, Syngal P, Vargas-Shiraishi O, Kingsmore SF, Sanford Kobayashi E, Coufal NG.

Pediatr Crit Care Med. 2024 Apr 26. doi: 10.1097/PCC.0000000000003522. Online ahead of print. ABSTRACT OBJECTIVES: Analysis of the clinical utility of rapid whole-genome sequencing (rWGS) outside of the neonatal period is lacking. We describe the use of rWGS in PICU and cardiovascular ICU (CICU) patients across four institutions. DESIGN: Ambidirectional multisite cohort study. SETTING: Four tertiary children’s hospitals. PATIENTS: Children 0-18 years old in the PICU or CICU who underwent rWGS analysis, from May 2016 to June 2023. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 133 patients underwent clinical, phenotype-driven rWGS analysis, 36 prospectively. A molecular diagnosis was identified in 79 patients (59%). Median (interquartile range [IQR]) age was 6 months (IQR 1.2 mo-4.6 yr). Median time for return of preliminary results was 3 days (IQR 2-4). In 79 patients with a molecular diagnosis, there was a change in ICU management in 19 patients (24%); and some change in clinical management in 63 patients (80%). Nondiagnosis changed management in 5 of 54 patients (9%). The clinical specialty ordering rWGS did not affect diagnostic rate. Factors associated with greater odds ratio (OR [95% CI]; OR [95% CI]) of diagnosis included dysmorphic features (OR 10.9 [95% CI, 1.8-105]) and congenital heart disease (OR 4.2 [95% CI, 1.3-16.8]). Variables associated with greater odds of changes in management included obtaining a genetic diagnosis (OR 16.6 [95% CI, 5.5-62]) and a shorter time to genetic result (OR 0.8 [95% CI, 0.76-0.9]). Surveys of pediatric intensivists indicated that rWGS-enhanced clinical prognostication (p < 0.0001) and contributed to a decision to consult palliative care (p < 0.02). CONCLUSIONS: In this 2016-2023 multiple-PICU/CICU cohort, we have shown that timely genetic diagnosis is feasible across institutions. Application of rWGS had a 59% (95% CI, 51-67%) rate of diagnostic yield and was associated with changes in critical care management and long-term patient management. PMID:38668387 | DOI:10.1097/PCC.0000000000003522

April 26, 2024

Rapid genomic sequencing for genetic disease diagnosis and therapy in intensive care units: a review

Kingsmore SF, Nofsinger R, Ellsworth K.

NPJ Genom Med. 2024 Feb 27;9(1):17. doi: 10.1038/s41525-024-00404-0. ABSTRACT Single locus (Mendelian) diseases are a leading cause of childhood hospitalization, intensive care unit (ICU) admission, mortality, and healthcare cost. Rapid genome sequencing (RGS), ultra-rapid genome sequencing (URGS), and rapid exome sequencing (RES) are diagnostic tests for genetic diseases for ICU patients. In 44 studies of children in ICUs with diseases of unknown etiology, 37% received a genetic diagnosis, 26% had consequent changes in management, and net healthcare costs were reduced by $14,265 per child tested by URGS, RGS, or RES. URGS outperformed RGS and RES with faster time to diagnosis, and higher rate of diagnosis and clinical utility. Diagnostic and clinical outcomes will improve as methods evolve, costs decrease, and testing is implemented within precision medicine delivery systems attuned to ICU needs. URGS, RGS, and RES are currently performed in <5% of the ~200,000 children likely to benefit annually due to lack of payor coverage, inadequate reimbursement, hospital policies, hospitalist unfamiliarity, under-recognition of possible genetic diseases, and current formatting as tests rather than as a rapid precision medicine delivery system. The gap between actual and optimal outcomes in children in ICUs is currently increasing since expanded use of URGS, RGS, and RES lags growth in those likely to benefit through new therapies. There is sufficient evidence to conclude that URGS, RGS, or RES should be considered in all children with diseases of uncertain etiology at ICU admission. Minimally, diagnostic URGS, RGS, or RES should be ordered early during admissions of critically ill infants and children with suspected genetic diseases. PMID:38413639 | DOI:10.1038/s41525-024-00404-0

February 27, 2024
RPM for NICU and PICUrWGSrWGS Efficacy

Evidence review and considerations for use of first line genome sequencing to diagnose rare genetic disorders

Wigby KM, Brockman D, Costain G, Hale C, Taylor SL, Belmont J, Bick D, Dimmock D, Fernbach S, Greally J, Jobanputra V, Kulkarni S, Spiteri E, Taft RJ.

NPJ Genom Med. 2024 Feb 26;9(1):15. doi: 10.1038/s41525-024-00396-x. ABSTRACT Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations. PMID:38409289 | DOI:10.1038/s41525-024-00396-x

February 26, 2024
Rare DiseaseRPM for NICU and PICU

Multi-center implementation of rapid whole genome sequencing provides additional evidence of its utility in the pediatric inpatient setting

Thompson L, Larson A, Salz L, Veith R, Tsai JP, Jayakar A, Chapman R, Gupta A, Kingsmore SF, Dimmock D, Bedrick A, Galindo MK, Casas K, Mohamed M, Straight L, Khan MA, Salyakina D.

Front Pediatr. 2024 Feb 19;12:1349519. doi: 10.3389/fped.2024.1349519. eCollection 2024. ABSTRACT OBJECTIVE: Multi-center implementation of rapid whole genome sequencing with assessment of the clinical utility of rapid whole genome sequencing (rWGS), including positive, negative and uncertain results, in admitted infants with a suspected genetic disease. STUDY DESIGN: rWGS tests were ordered at eight hospitals between November 2017 and April 2020. Investigators completed a survey of demographic data, Human Phenotype Ontology (HPO) terms, test results and impacts of results on clinical care. RESULTS: A total of 188 patients, on general hospital floors and intensive care unit (ICU) settings, underwent rWGS testing. Racial and ethnic characteristics of the tested infants were broadly representative of births in the country at large. 35% of infants received a diagnostic result in a median of 6 days. The most common HPO terms for tested infants indicated an abnormality of the nervous system, followed by the cardiovascular system, the digestive system, the respiratory system and the head and neck. Providers indicated a major change in clinical management because of rWGS for 32% of infants tested overall and 70% of those with a diagnostic result. Also, 7% of infants with a negative rWGS result and 23% with a variant of unknown significance (VUS) had a major change in management due to testing. CONCLUSIONS: Our study demonstrates that the implementation of rWGS is feasible across diverse institutions, and provides additional evidence to support the clinical utility of rWGS in a demographically representative sample of admitted infants and includes assessment of the clinical impact of uncertain rWGS results in addition to both positive and negative results. PMID:38440187 | PMC:PMC10909823 | DOI:10.3389/fped.2024.1349519

February 19, 2024
RPM for NICU and PICUrWGSrWGS Efficacy


Genome sequencing detects a wide range of clinically relevant copy number variants and other genomic alterations

James KN, Chowdhury S, Ding Y, Batalov S, Watkins K, Kwon YH, Van Der Kraan L, Ellsworth K, Kingsmore SF, Guidugli L. 

Genet Med. 2023 Oct 20:101006. doi: 10.1016/j.gim.2023.101006. Online ahead of print. ABSTRACT PURPOSE: Copy number variants (CNVs) and other non-SNV/indel variant types contribute an important proportion of diagnoses in individuals with suspected genetic disease. This study describes the range of such variants detected by genome sequencing (GS). METHODS: For a pediatric cohort of 1032 participants undergoing clinical GS, we characterize the CNVs and other non-SNV/indel variant types that were reported, including aneuploidies, mobile element insertions, and uniparental disomies, and we describe the bioinformatic pipeline used to detect these variants. RESULTS: Together, these genetic alterations accounted for 15.8% of reported variants. Notably, 67.9% of these were deletions, 32.9% of which overlapped a single gene, and many deletions were reported together with a second variant in the same gene in cases of recessive disease. A retrospective medical record review in a subset of this cohort revealed that up to six additional genetic tests were ordered in 68% (26/38) of cases, some of which failed to report the CNVs/rare variants reported on GS. CONCLUSION: GS detected a broad range of reported variant types, including CNVs ranging in size from 1 Kb to 46 Mb. PMID:37869996 DOI:10.1016/j.gim.2023.101006

October 20, 2023

Rapid Whole-Genomic Sequencing and a Targeted Neonatal Gene Panel in Infants With a Suspected Genetic Disorder

Maron JL, Kingsmore S, Gelb BD, Vockley J, Wigby K, Bragg J, Stroustrup A, Poindexter B, Suhrie K, Kim J, Diacovo T, Powell CM, Trembath A, Guidugli L, Ellsworth KA, Reed D, Kurfiss A, Breeze JL, Trinquart L, Davis JM

JAMA. 2023 Jul 11;330(2):161-169. doi: 10.1001/jama.2023.9350. ABSTRACT IMPORTANCE: Genomic testing in infancy guides medical decisions and can improve health outcomes. However, it is unclear whether genomic sequencing or a targeted neonatal gene-sequencing test provides comparable molecular diagnostic yields and times to return of results. OBJECTIVE: To compare outcomes of genomic sequencing with those of a targeted neonatal gene-sequencing test. DESIGN, SETTING, AND PARTICIPANTS: The Genomic Medicine for Ill Neonates and Infants (GEMINI) study was a prospective, comparative, multicenter study of 400 hospitalized infants younger than 1 year of age (proband) and their parents, when available, suspected of having a genetic disorder. The study was conducted at 6 US hospitals from June 2019 to November 2021. EXPOSURE: Enrolled participants underwent simultaneous testing with genomic sequencing and a targeted neonatal gene-sequencing test. Each laboratory performed an independent interpretation of variants guided by knowledge of the patient’s phenotype and returned results to the clinical care team. Change in clinical management, therapies offered, and redirection of care was provided to families based on genetic findings from either platform. MAIN OUTCOMES AND MEASURES: Primary end points were molecular diagnostic yield (participants with ≥1 pathogenic variant or variant of unknown significance), time to return of results, and clinical utility (changes in patient care). RESULTS: A molecular diagnostic variant was identified in 51% of participants (n = 204; 297 variants identified with 134 being novel). Molecular diagnostic yield of genomic sequencing was 49% (95% CI, 44%-54%) vs 27% (95% CI, 23%-32%) with the targeted gene-sequencing test. Genomic sequencing did not report 19 variants found by the targeted neonatal gene-sequencing test; the targeted gene-sequencing test did not report 164 variants identified by genomic sequencing as diagnostic. Variants unidentified by the targeted genomic-sequencing test included structural variants longer than 1 kilobase (25.1%) and genes excluded from the test (24.6%) (McNemar odds ratio, 8.6 [95% CI, 5.4-14.7]). Variant interpretation by laboratories differed by 43%. Median time to return of results was 6.1 days for genomic sequencing and 4.2 days for the targeted genomic-sequencing test; for urgent cases (n = 107) the time was 3.3 days for genomic sequencing and 4.0 days for the targeted gene-sequencing test. Changes in clinical care affected 19% of participants, and 76% of clinicians viewed genomic testing as useful or very useful in clinical decision-making, irrespective of a diagnosis. CONCLUSIONS AND RELEVANCE: The molecular diagnostic yield for genomic sequencing was higher than a targeted neonatal gene-sequencing test, but the time to return of routine results was slower. Interlaboratory variant interpretation contributes to differences in molecular diagnostic yield and may have important consequences for clinical management. PMID:37432431 DOI:10.1001/jama.2023.9350

July 11, 2023
RPM for NICU and PICUrWGSrWGS Efficacy

Assessing Diversity in Newborn Genomic Sequencing Research Recruitment: Race/Ethnicity and Primary Spoken Language Variation in Eligibility, Enrollment, and Reasons for Declining

Cakici JA, Dimmock D, Caylor S, Gaughran M, Clarke C, Triplett C, Clark MM, Kingsmore SF, Bloss CS.

Clin Ther. 2023 Jul 8:S0149-2918(23)00220-5. doi: 10.1016/j.clinthera.2023.06.014. Online ahead of print. ABSTRACT PURPOSE: Diagnostic genomic research has the potential to directly benefit participants. This study sought to identify barriers to equitable enrollment of acutely ill newborns into a diagnostic genomic sequencing research study. METHODS: We reviewed the 16-month recruitment process of a diagnostic genomic research study enrolling newborns admitted to the neonatal intensive care unit at a regional pediatric hospital that primarily serves English- and Spanish-speaking families. Differences in eligibility, enrollment, and reasons for not enrolling were examined as functions of race/ethnicity and primary spoken language. FINDINGS: Of the 1248 newborns admitted to the neonatal intensive care unit, 46% (n = 580) were eligible, and 17% (n = 213) were enrolled. Of the 16 languages represented among the newborns’ families, 4 (25%) had translated consent documents. Speaking a language other than English or Spanish increased a newborn’s likelihood of being ineligible by 5.9 times (P < 0.001) after controlling for race/ethnicity. The main reason for ineligibility was documented as the clinical team declined having their patient recruited (41% [51 of 125]). This reason significantly affected families who spoke languages other than English or Spanish and was able to be remediated with training of the research staff. Stress (20% [18 of 90]) and the study intervention(s) (20% [18 of 90]) were the main reasons given for not enrolling. IMPLICATIONS: This analysis of eligibility, enrollment, and reasons for not enrolling in a diagnostic genomic research study found that recruitment generally did not differ as a function of a newborn’s race/ethnicity. However, differences were observed depending on the parent’s primary spoken language. Regular monitoring and training can improve equitable enrollment into diagnostic genomic research. There are also opportunities at the federal level to improve access to those with limited English proficiency and thus decrease disparities in representation in research participation. PMID:37429778 DOI:10.1016/j.clinthera.2023.06.014

July 8, 2023
Newborn ScreeningRPM for NICU and PICU

Rapid Whole Genome Sequencing for Diagnosis of Single Locus Genetic Diseases in Critically Ill Children

Owen MJ, Batalov S, Ellsworth KA, Wright M, Breeding S, Hugh K, Kingsmore SF, Ding Y.

Methods Mol Biol. 2023;2621:217-239. doi: 10.1007/978-1-0716-2950-5_12. ABSTRACT Upon admission to intensive care units (ICU), the differential diagnosis of almost all infants with diseases of unclear etiology includes single locus genetic diseases. Rapid whole genome sequencing (rWGS), including sample preparation, short-read sequencing-by-synthesis, informatics pipelining, and semiautomated interpretation, can now identify nucleotide and structural variants associated with most genetic diseases with robust analytic and diagnostic performance in as little as 13.5 h. Early diagnosis of genetic diseases transforms medical and surgical management of infants in ICUs, minimizing both the duration of empiric treatment and the delay to start of specific treatment. Both positive and negative rWGS tests have clinical utility and can improve outcomes. Since first described 10 years ago, rWGS has evolved considerably. Here we describe our current methods for routine diagnostic testing for genetic diseases by rWGS in as little as 18 h. PMID:37041447 DOI:10.1007/978-1-0716-2950-5_12

April 12, 2023

Automated prioritization of sick newborns for whole genome sequencing using clinical natural language processing and machine learning

Peterson B, Hernandez EJ, Hobbs C, Malone Jenkins S, Moore B, Rosales E, Zoucha S, Sanford E, Bainbridge MN, Frise E, Oriol A, Brunelli L, Kingsmore SF, Yandell M.

Genome Med. 2023 Mar 16;15(1):18. doi: 10.1186/s13073-023-01166-7. ABSTRACT BACKGROUND: Rapidly and efficiently identifying critically ill infants for whole genome sequencing (WGS) is a costly and challenging task currently performed by scarce, highly trained experts and is a major bottleneck for application of WGS in the NICU. There is a dire need for automated means to prioritize patients for WGS. METHODS: Institutional databases of electronic health records (EHRs) are logical starting points for identifying patients with undiagnosed Mendelian diseases. We have developed automated means to prioritize patients for rapid and whole genome sequencing (rWGS and WGS) directly from clinical notes. Our approach combines a clinical natural language processing (CNLP) workflow with a machine learning-based prioritization tool named Mendelian Phenotype Search Engine (MPSE). RESULTS: MPSE accurately and robustly identified NICU patients selected for WGS by clinical experts from Rady Children’s Hospital in San Diego (AUC 0.86) and the University of Utah (AUC 0.85). In addition to effectively identifying patients for WGS, MPSE scores also strongly prioritize diagnostic cases over non-diagnostic cases, with projected diagnostic yields exceeding 50% throughout the first and second quartiles of score-ranked patients. CONCLUSIONS: Our results indicate that an automated pipeline for selecting acutely ill infants in neonatal intensive care units (NICU) for WGS can meet or exceed diagnostic yields obtained through current selection procedures, which require time-consuming manual review of clinical notes and histories by specialized personnel. PMID:36927505 DOI:10.1186/s13073-023-01166-7

March 16, 2023

Genomic sequencing has a high diagnostic yield in children with congenital anomalies of the heart and urinary system

Allred ET, Perens EA, Coufal NG, Sanford Kobayashi E, Kingsmore SF, Dimmock DP. 

Front Pediatr. 2023 Mar 14;11:1157630. doi: 10.3389/fped.2023.1157630. eCollection 2023. ABSTRACT BACKGROUND: Congenital heart defects (CHD) and congenital anomalies of the kidney and urinary tract (CAKUT) account for significant morbidity and mortality in childhood. Dozens of monogenic causes of anomalies in each organ system have been identified. However, even though 30% of CHD patients also have a CAKUT and both organs arise from the lateral mesoderm, there is sparse overlap of the genes implicated in the congenital anomalies for these organ systems. We sought to determine whether patients with both CAKUT and CHD have a monogenic etiology, with the long-term goal of guiding future diagnostic work up and improving outcomes. METHODS: Retrospective review of electronic medical records (EMR), identifying patients admitted to Rady Children’s Hospital between January 2015 and July 2020 with both CAKUT and CHD who underwent either whole exome sequencing (WES) or whole genome sequencing (WGS). Data collected included demographics, presenting phenotype, genetic results, and mother’s pregnancy history. WGS data was reanalyzed with a specific focus on the CAKUT and CHD phenotype. Genetic results were reviewed to identify causative, candidate, and novel genes for the CAKUT and CHD phenotype. Associated additional structural malformations were identified and categorized. RESULTS: Thirty-two patients were identified. Eight patients had causative variants for the CAKUT/CHD phenotype, three patients had candidate variants, and three patients had potential novel variants. Five patients had variants in genes not associated with the CAKUT/CHD phenotype, and 13 patients had no variant identified. Of these, eight patients were identified as having possible alternative causes for their CHD/CAKUT phenotype. Eighty-eight percent of all CAKUT/CHD patients had at least one additional organ system with a structural malformation. CONCLUSIONS: Overall, our study demonstrated a high rate of monogenic etiologies in hospitalized patients with both CHD and CAKUT, with a diagnostic rate of 44%. Thus, physicians should have a high suspicion for genetic disease in this population. Together, these data provide valuable information on how to approach acutely ill patients with CAKUT and CHD, including guiding diagnostic work up for associated phenotypes, as well as novel insights into the genetics of CAKUT and CHD overlap syndromes in hospitalized children. PMID:36999085 DOI:10.3389/fped.2023.1157630

March 14, 2023

Publications Question?

Contact Us About BeginNGS