Report of two cases of Schaaf-Yang syndrome: Same genotype and different phenotype
Rodriguez AM, Schain K, Jayakar P, Wright MS, Chowdhury S, Salyakina D.
Clin Case Rep. 2023 Jul 30;11(8):e7753. doi: 10.1002/ccr3.7753. eCollection 2023 Aug.
ABSTRACT
We report two, genotypically identical but phenotypically distinct cases of Schaaf-Yang syndrome and propose the early use of Genome Sequencing in patients with nonspecific presentations to facilitate the early diagnosis of children with rare genetic diseases and improve overall health care outcomes.
PMID:
37529132 DOI:
10.1002/ccr3.7753
July 30, 2023
rWGS
Rapid Whole-Genomic Sequencing and a Targeted Neonatal Gene Panel in Infants With a Suspected Genetic Disorder
Maron JL, Kingsmore S, Gelb BD, Vockley J, Wigby K, Bragg J, Stroustrup A, Poindexter B, Suhrie K, Kim J, Diacovo T, Powell CM, Trembath A, Guidugli L, Ellsworth KA, Reed D, Kurfiss A, Breeze JL, Trinquart L, Davis JM
JAMA. 2023 Jul 11;330(2):161-169. doi: 10.1001/jama.2023.9350.
ABSTRACT
IMPORTANCE: Genomic testing in infancy guides medical decisions and can improve health outcomes. However, it is unclear whether genomic sequencing or a targeted neonatal gene-sequencing test provides comparable molecular diagnostic yields and times to return of results.
OBJECTIVE: To compare outcomes of genomic sequencing with those of a targeted neonatal gene-sequencing test.
DESIGN, SETTING, AND PARTICIPANTS: The Genomic Medicine for Ill Neonates and Infants (GEMINI) study was a prospective, comparative, multicenter study of 400 hospitalized infants younger than 1 year of age (proband) and their parents, when available, suspected of having a genetic disorder. The study was conducted at 6 US hospitals from June 2019 to November 2021.
EXPOSURE: Enrolled participants underwent simultaneous testing with genomic sequencing and a targeted neonatal gene-sequencing test. Each laboratory performed an independent interpretation of variants guided by knowledge of the patient’s phenotype and returned results to the clinical care team. Change in clinical management, therapies offered, and redirection of care was provided to families based on genetic findings from either platform.
MAIN OUTCOMES AND MEASURES: Primary end points were molecular diagnostic yield (participants with ≥1 pathogenic variant or variant of unknown significance), time to return of results, and clinical utility (changes in patient care).
RESULTS: A molecular diagnostic variant was identified in 51% of participants (n = 204; 297 variants identified with 134 being novel). Molecular diagnostic yield of genomic sequencing was 49% (95% CI, 44%-54%) vs 27% (95% CI, 23%-32%) with the targeted gene-sequencing test. Genomic sequencing did not report 19 variants found by the targeted neonatal gene-sequencing test; the targeted gene-sequencing test did not report 164 variants identified by genomic sequencing as diagnostic. Variants unidentified by the targeted genomic-sequencing test included structural variants longer than 1 kilobase (25.1%) and genes excluded from the test (24.6%) (McNemar odds ratio, 8.6 [95% CI, 5.4-14.7]). Variant interpretation by laboratories differed by 43%. Median time to return of results was 6.1 days for genomic sequencing and 4.2 days for the targeted genomic-sequencing test; for urgent cases (n = 107) the time was 3.3 days for genomic sequencing and 4.0 days for the targeted gene-sequencing test. Changes in clinical care affected 19% of participants, and 76% of clinicians viewed genomic testing as useful or very useful in clinical decision-making, irrespective of a diagnosis.
CONCLUSIONS AND RELEVANCE: The molecular diagnostic yield for genomic sequencing was higher than a targeted neonatal gene-sequencing test, but the time to return of routine results was slower. Interlaboratory variant interpretation contributes to differences in molecular diagnostic yield and may have important consequences for clinical management.
PMID:
37432431 DOI:
10.1001/jama.2023.9350
July 11, 2023
RPM for NICU and PICUrWGSrWGS Efficacy
Rapid Whole Genome Sequencing for Diagnosis of Single Locus Genetic Diseases in Critically Ill Children
Owen MJ, Batalov S, Ellsworth KA, Wright M, Breeding S, Hugh K, Kingsmore SF, Ding Y.
Methods Mol Biol. 2023;2621:217-239. doi: 10.1007/978-1-0716-2950-5_12.
ABSTRACT
Upon admission to intensive care units (ICU), the differential diagnosis of almost all infants with diseases of unclear etiology includes single locus genetic diseases. Rapid whole genome sequencing (rWGS), including sample preparation, short-read sequencing-by-synthesis, informatics pipelining, and semiautomated interpretation, can now identify nucleotide and structural variants associated with most genetic diseases with robust analytic and diagnostic performance in as little as 13.5 h. Early diagnosis of genetic diseases transforms medical and surgical management of infants in ICUs, minimizing both the duration of empiric treatment and the delay to start of specific treatment. Both positive and negative rWGS tests have clinical utility and can improve outcomes. Since first described 10 years ago, rWGS has evolved considerably. Here we describe our current methods for routine diagnostic testing for genetic diseases by rWGS in as little as 18 h.
PMID:
37041447 DOI:
10.1007/978-1-0716-2950-5_12
April 12, 2023
RPM for NICU and PICUrWGS
Automated prioritization of sick newborns for whole genome sequencing using clinical natural language processing and machine learning
Peterson B, Hernandez EJ, Hobbs C, Malone Jenkins S, Moore B, Rosales E, Zoucha S, Sanford E, Bainbridge MN, Frise E, Oriol A, Brunelli L, Kingsmore SF, Yandell M.
Genome Med. 2023 Mar 16;15(1):18. doi: 10.1186/s13073-023-01166-7.
ABSTRACT
BACKGROUND: Rapidly and efficiently identifying critically ill infants for whole genome sequencing (WGS) is a costly and challenging task currently performed by scarce, highly trained experts and is a major bottleneck for application of WGS in the NICU. There is a dire need for automated means to prioritize patients for WGS.
METHODS: Institutional databases of electronic health records (EHRs) are logical starting points for identifying patients with undiagnosed Mendelian diseases. We have developed automated means to prioritize patients for rapid and whole genome sequencing (rWGS and WGS) directly from clinical notes. Our approach combines a clinical natural language processing (CNLP) workflow with a machine learning-based prioritization tool named Mendelian Phenotype Search Engine (MPSE).
RESULTS: MPSE accurately and robustly identified NICU patients selected for WGS by clinical experts from Rady Children’s Hospital in San Diego (AUC 0.86) and the University of Utah (AUC 0.85). In addition to effectively identifying patients for WGS, MPSE scores also strongly prioritize diagnostic cases over non-diagnostic cases, with projected diagnostic yields exceeding 50% throughout the first and second quartiles of score-ranked patients.
CONCLUSIONS: Our results indicate that an automated pipeline for selecting acutely ill infants in neonatal intensive care units (NICU) for WGS can meet or exceed diagnostic yields obtained through current selection procedures, which require time-consuming manual review of clinical notes and histories by specialized personnel.
PMID:
36927505 DOI:
10.1186/s13073-023-01166-7
March 16, 2023
RPM for NICU and PICUrWGS
Scalable, high quality, whole genome sequencing from archived, newborn, dried blood spots
Ding Y, Owen M, Le J, Batalov S, Chau K, Kwon YH, Van Der Kraan L, Bezares-Orin Z, Zhu Z, Veeraraghavan N, Nahas S, Bainbridge M, Gleeson J, Baer RJ, Bandoli G, Chambers C, Kingsmore SF.
NPJ Genom Med. 2023 Feb 14;8(1):5. doi: 10.1038/s41525-023-00349-w.
ABSTRACT
Universal newborn screening (NBS) is a highly successful public health intervention. Archived dried bloodspots (DBS) collected for NBS represent a rich resource for population genomic studies. To fully harness this resource in such studies, DBS must yield high-quality genomic DNA (gDNA) for whole genome sequencing (WGS). In this pilot study, we hypothesized that gDNA of sufficient quality and quantity for WGS could be extracted from archived DBS up to 20 years old without PCR (Polymerase Chain Reaction) amplification. We describe simple methods for gDNA extraction and WGS library preparation from several types of DBS. We tested these methods in DBS from 25 individuals who had previously undergone diagnostic, clinical WGS and 29 randomly selected DBS cards collected for NBS from the California State Biobank. While gDNA from DBS had significantly less yield than from EDTA blood from the same individuals, it was of sufficient quality and quantity for WGS without PCR. All samples DBS yielded WGS that met quality control metrics for high-confidence variant calling. Twenty-eight variants of various types that had been reported clinically in 19 samples were recapitulated in WGS from DBS. There were no significant effects of age or paper type on WGS quality. Archived DBS appear to be a suitable sample type for WGS in population genomic studies.
PMID:
36788231 DOI:
10.1038/s41525-023-00349-w
February 14, 2023
Newborn ScreeningRPM for NICU and PICUrWGS
25: A Multicenter Cohort Analysis of Rapid Genome Sequencing in the PICU
Rodriguez, Katherine; Kobayashi, Erica Sanford; VanDongen-Trimmer, Heather; Salz, Lisa; Foley, Jennifer; Whalen, Drewann; Oluchukwu, Okonkwo; Liu, Kuang Chuen; Burton, Jennifer; Syngal, Prachi; Kingsmore, Stephen; Coufal, Nicole.
Critical Care Medicine 51(1):p 13, January 2023.
Genetic disorders contribute significantly to morbidity and mortality in pediatric critical care. Diagnostic rapid whole genome sequencing (rWGS) has dramatically impacted care in neonatal intensive care units (ICU). There remains a population of undiagnosed patients with rare genetic diseases who present critically ill to the pediatric ICU (PICU) and the application of rWGS in this setting is not yet fully described. This study evaluated the clinical utility of rWGS in the PICU.
DOI: 10.1097/01.ccm.0000905976.97417.e4
January 31, 2023
RPM for NICU and PICUrWGSrWGS Efficacy
Breaking Barriers to Rapid Whole Genome Sequencing in Pediatrics: Michigan’s Project Baby Deer
Bupp CP, Ames EG, Arenchild MK, Caylor S, Dimmock DP, Fakhoury JD, Karna P, Lehman A, Meghea CI, Misra V, Nolan DA, O’Shea J, Sharangpani A, Franck LS, Scheurer-Monaghan A.
Children. 2023; 10(1):106. https://doi.org/10.3390/children10010106
ABSTRACT
The integration of precision medicine in the care of hospitalized children is ever evolving. However, access to new genomic diagnostics such as rapid whole genome sequencing (rWGS) is hindered by barriers in implementation. Michigan’s Project Baby Deer (PBD) is a multi-center collaborative effort that sought to break down barriers to access by offering rWGS to critically ill neonatal and pediatric inpatients in Michigan. The clinical champion team used a standardized approach with inclusion and exclusion criteria, shared learning, and quality improvement evaluation of the project’s impact on the clinical outcomes and economics of inpatient rWGS. Hospitals, including those without on-site geneticists or genetic counselors, noted positive clinical impacts, accelerating time to definitive treatment for project patients. Between 95–214 hospital days were avoided, net savings of $4155 per patient, and family experience of care was improved. The project spurred policy advancement when Michigan became the first state in the United States to have a Medicaid policy with carve-out payment to hospitals for rWGS testing. This state project demonstrates how front-line clinician champions can directly improve access to new technology for pediatric patients and serves as a roadmap for expanding clinical implementation of evidence-based precision medicine technologies.
January 4, 2023
RPM for NICU and PICUrWGSrWGS Efficacy
Rapid genome sequencing identifies novel variants in complement factor I
Rodriguez KM, Vaught J, Dilley M, Ellsworth K, Heinen A, Abud EM, Zhang Y, Smith RJH, Sheets R, Geng B, Hoffman HM, Worthen HM, Dimmock D, Coufal NG.
Cold Spring Harb Mol Case Stud. 2022 Dec 28;8(7):a006239. doi: 10.1101/mcs.a006239. Print 2022 Dec.
ABSTRACT
Complement factor I deficiency (CFID; OMIM #610984) is a rare immunodeficiency caused by deficiencies in the serine protease complement factor I (CFI). CFID is characterized by predisposition to severe pneumococcal infection, often in infancy. We report a previously healthy adolescent male who presented with respiratory failure secondary to pneumococcal pneumonia and severe systemic inflammatory response. Rapid genome sequencing (rGS) identified compound heterozygous variants in CFI in the proband, with a novel maternally inherited likely pathogenic variant, a single nucleotide deletion resulting in premature stop (c.1646del; p.Asn549ThrfsTer25) and a paternally inherited novel likely pathogenic deletion (Chr 4:110685580-110692197del).
PMID:
36577522 DOI:
10.1101/mcs.a006239
December 28, 2022
rWGS
Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics
Hopkins CE, Brock T, Caulfield TR, Bainbridge M.
Mol Aspects Med. 2022 Nov 18:101153. doi: 10.1016/j.mam.2022.101153. Online ahead of print.
ABSTRACT
Precision medicine strives for highly individualized treatments for disease under the notion that each individual’s unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient’s genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
PMID:
36411139 DOI:
10.1016/j.mam.2022.101153
November 18, 2022
rWGS
Rapid Whole Genome Sequencing in Critically Ill Neonates Enables Precision Medicine Pipeline
Beaman M, Fisher K, McDonald M, Tan QKG, Jackson D, Cocanougher BT, Landstrom AP, Hobbs CA, Cotten M, Cohen JL.
J Pers Med. 2022 Nov 18;12(11):1924. doi: 10.3390/jpm12111924.
ABSTRACT
Rapid genome sequencing in critically ill infants is increasingly identified as a crucial test for providing targeted and informed patient care. We report the outcomes of a pilot study wherein eight critically ill neonates received rapid whole genome sequencing with parental samples in an effort to establish a prompt diagnosis. Our pilot study resulted in a 37.5% diagnostic rate by whole genome sequencing alone and an overall 50% diagnostic rate for the cohort. We describe how the diagnoses led to identification of additional affected relatives and a change in management, the limitations of rapid genome sequencing, and some of the challenges with sample collection. Alongside this pilot study, our site simultaneously established a research protocol pipeline that will allow us to conduct research-based genomic testing in the cases for which a diagnosis was not reached by rapid genome sequencing or other available clinical testing. Here we describe the benefits, limitations, challenges, and potential for rapid whole genome sequencing to be incorporated into routine clinical evaluation in the neonatal period.
PMID:
36422100 DOI:
10.3390/jpm12111924
November 18, 2022
RPM for NICU and PICUrWGSrWGS Efficacy