Scientific Publications

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis blandit elit metus, mattis consectetur eros fermentum id. Cras lorem purus, finibus vel aliquam ac, porta in libero. Cras lorem purus, finibus vel aliquam ac, porta in libero.

  • Results Per Page

351 Results

2017

Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert Syndrome with Cranio-facial and Skeletal Defects

De Mori R, Romani M, D’Arrigo S, Zaki MS, Lorefice E, Tardivo S, Biagini T, Stanley V, Musaev D, Fluss J, Micalizzi A, Nuovo S, Illi B, Chiapparini L, Di Marcotullio L, Issa MY, Anello D, Casella A, Ginevrino M, Leggins AS, Roosing S, Alfonsi R, Rosati J, Schot R, Mancini GMS, Bertini E, Dobyns WB, Mazza T, Gleeson JG, Valente EM.

Am J Hum Genet. 2017 Oct 5;101(4):552-563. doi: 10.1016/j.ajhg.2017.08.017. Epub 2017 Sep 28. ABSTRACT The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmental disorders. SUFU is the main negative regulator of the SHH pathway and is essential during development. Indeed, Sufu knock-out is lethal in mice, and recessive pathogenic variants of this gene have never been reported in humans. Through whole-exome sequencing in subjects with Joubert syndrome, we identified four children from two unrelated families carrying homozygous missense variants in SUFU. The children presented congenital ataxia and cerebellar vermis hypoplasia with elongated superior cerebellar peduncles (mild “molar tooth sign”), typical cranio-facial dysmorphisms (hypertelorism, depressed nasal bridge, frontal bossing), and postaxial polydactyly. Two siblings also showed polymicrogyria. Molecular dynamics simulation predicted random movements of the mutated residues, with loss of the native enveloping movement of the binding site around its ligand GLI3. Functional studies on cellular models and fibroblasts showed that both variants significantly reduced SUFU stability and its capacity to bind GLI3 and promote its cleavage into the repressor form GLI3R. In turn, this impaired SUFU-mediated repression of the SHH pathway, as shown by altered expression levels of several target genes. We demonstrate that germline hypomorphic variants of SUFU cause deregulation of SHH signaling, resulting in recessive developmental defects of the CNS and limbs which share features with both SHH-related disorders and ciliopathies. PMID:28965847 | PMC:PMC5630196 | DOI:10.1016/j.ajhg.2017.08.017

October 3, 2017

Low CSF 5-HIAA in Myoclonus Dystonia

Peall KJ, Ng J, Dy ME, Sharma N, Pope S, Heales S, Friedman JR, Kurian MA.

Mov Disord. 2017 Nov;32(11):1647-1649. doi: 10.1002/mds.27117. Epub 2017 Sep 26. NO ABSTRACT PMID:28949039 | PMC:PMC5796435 | DOI:10.1002/mds.27117

September 27, 2017

Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia

Marin-Valencia I, Gerondopoulos A, Zaki MS, Ben-Omran T, Almureikhi M, Demir E, Guemez-Gamboa A, Gregor A, Issa MY, Appelhof B, Roosing S, Musaev D, Rosti B, Wirth S, Stanley V, Baas F, Barr FA, Gleeson JG.

Am J Hum Genet. 2017 Sep 7;101(3):441-450. doi: 10.1016/j.ajhg.2017.07.015. Epub 2017 Aug 17. ABSTRACT Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes. PMID:28823706 | PMC:PMC5590949 | DOI:10.1016/j.ajhg.2017.07.015

August 22, 2017

Should we implement population screening for fragile X?

Dimmock DP. 

Genet Med. 2017 Dec;19(12):1295-1299. doi: 10.1038/gim.2017.81. Epub 2017 Aug 3. NO ABSTRACT PMID:28771250 | DOI:10.1038/gim.2017.81

August 4, 2017

Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society

Parikh S, Goldstein A, Karaa A, Koenig MK, Anselm I, Brunel-Guitton C, Christodoulou J, Cohen BH, Dimmock D, Enns GM, Falk MJ, Feigenbaum A, Frye RE, Ganesh J, Griesemer D, Haas R, Horvath R, Korson M, Kruer MC, Mancuso M, McCormack S, Raboisson MJ, Reimschisel T, Salvarinova R, Saneto RP, Scaglia F, Shoffner J, Stacpoole PW, Sue CM, Tarnopolsky M, Van Karnebeek C, Wolfe LA, Cunningham ZZ, Rahman S, Chinnery PF.

Genet Med. 2017 Dec;19(12):10.1038/gim.2017.107. doi: 10.1038/gim.2017.107. Epub 2017 Jul 27. ABSTRACT The purpose of this statement is to provide consensus-based recommendations for optimal management and care for patients with primary mitochondrial disease. This statement is intended for physicians who are engaged in the diagnosis and management of these patients. Working group members were appointed by the Mitochondrial Medicine Society. The panel included members with several different areas of expertise. The panel members utilized surveys and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Consensus-based recommendations are provided for the routine care and management of patients with primary genetic mitochondrial disease. PMID:28749475 | PMC:PMC7804217 | DOI:10.1038/gim.2017.107

July 28, 2017

Analyses of SLC13A5-epilepsy patients reveal perturbations of TCA cycle. 

Bainbridge MN, Cooney E, Miller M, Kennedy AD, Wulff JE, Donti T, Jhangiani SN, Gibbs RA, Elsea SH, Porter BE, Graham BH.

Mol Genet Metab. 2017 Aug;121(4):314-319. doi: 10.1016/j.ymgme.2017.06.009. Epub 2017 Jun 24. PMID: 28673551; PMCID: PMC7539367. Abstract Objective: To interrogate the metabolic profile of five subjects from three families with rare, nonsense and missense mutations in SLC13A5 and Early Infantile Epileptic Encephalopathies (EIEE) characterized by severe, neonatal onset seizures, psychomotor retardation and global developmental delay. Methods: Mass spectrometry of plasma, CSF and urine was used to identify consistently dysregulated analytes in our subjects. Results: Distinctive elevations of citrate and dysregulation of citric acid cycle intermediates, supporting the hypothesis that loss of SLC13A5 function alters tricarboxylic acid cycle (TCA) metabolism and may disrupt metabolic compartmentation in the brain. Significance: Our results indicate that analysis of plasma citrate and other TCA analytes in SLC13A5 deficient patients define a diagnostic metabolic signature that can aid in diagnosing children with this disease. PMID: 28673551 | PMCID: PMC7539367 | DOI: 10.1016/j.ymgme.2017.06.009

June 24, 2017
Gene Discovery

A homozygous founder mutation in TRAPPC6B associates with a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features

Marin-Valencia I, Novarino G, Johansen A, Rosti B, Issa MY, Musaev D, Bhat G, Scott E, Silhavy JL, Stanley V, Rosti RO, Gleeson JW, Imam FB, Zaki MS, Gleeson JG.

J Med Genet. 2018 Jan;55(1):48-54. doi: 10.1136/jmedgenet-2017-104627. Epub 2017 Jun 16. ABSTRACT BACKGROUND: Transport protein particle (TRAPP) is a multisubunit complex that regulates membrane trafficking through the Golgi apparatus. The clinical phenotype associated with mutations in various TRAPP subunits has allowed elucidation of their functions in specific tissues. The role of some subunits in human disease, however, has not been fully established, and their functions remain uncertain. OBJECTIVE: We aimed to expand the range of neurodevelopmental disorders associated with mutations in TRAPP subunits by exome sequencing of consanguineous families. METHODS: Linkage and homozygosity mapping and candidate gene analysis were used to identify homozygous mutations in families. Patient fibroblasts were used to study splicing defect and zebrafish to model the disease. RESULTS: We identified six individuals from three unrelated families with a founder homozygous splice mutation in TRAPPC6B, encoding a core subunit of the complex TRAPP I. Patients manifested a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features, and showed splicing defect. Zebrafish trappc6b morphants replicated the human phenotype, displaying decreased head size and neuronal hyperexcitability, leading to a lower seizure threshold. CONCLUSION: This study provides clinical and functional evidence of the role of TRAPPC6B in brain development and function. PMID:28626029 | PMC:PMC6056005 | DOI:10.1136/jmedgenet-2017-104627

June 20, 2017

Successful Application of Whole Genome Sequencing in a Medical Genetics Clinic

Bick D, Fraser PC, Gutzeit MF, Harris JM, Hambuch TM, Helbling DC, Jacob HJ, Kersten JN, Leuthner SR, May T, North PE, Prisco SZ, Schuler BA, Shimoyama M, Strong KA, Van Why SK, Veith R, Verbsky J, Weborg AM Jr, Wilk BM, Willoughby RE Jr, Worthey EA, Dimmock DP. 

J Pediatr Genet. 2017 Jun;6(2):61-76. doi: 10.1055/s-0036-1593968. Epub 2016 Nov 28. ABSTRACT A pilot program was initiated using whole genome sequencing (WGS) to diagnose suspected genetic disorders in the Genetics Clinic at Children’s Hospital of Wisconsin. Twenty-two patients underwent WGS between 2010 and 2013. Initially, we obtained a 14% (3/22) diagnosis rate over 2 years; with subsequent reanalysis, this increased to 36% (8/22). Disease causing variants were identified in SKIV2L, CECR1, DGKE, PYCR2, RYR1, PDGFRB, EFTUD2, and BCS1L. In 75% (6/8) of diagnosed cases, the diagnosis affected treatment and/or medical surveillance. Additionally, one case demonstrated a homozygous A18V variant in VLDLR that appears to be associated with a previously undescribed phenotype. PMID:28496993 | PMC:PMC5423809 | DOI:10.1055/s-0036-1593968

May 13, 2017

Bedside Back to Bench: Building Bridges between Basic and Clinical Genomic Research

Manolio TA, Fowler DM, Starita LM, Haendel MA, MacArthur DG, Biesecker LG, Worthey E, Chisholm RL, Green ED, Jacob HJ, McLeod HL, Roden D, Rodriguez LL, Williams MS, Cooper GM, Cox NJ, Herman GE, Kingsmore S, Lo C, Lutz C, MacRae CA, Nussbaum RL, Ordovas JM, Ramos EM, Robinson PN, Rubinstein WS, Seidman C, Stranger BE, Wang H, Westerfield M, Bult C.

Cell. 2017 Mar 23;169(1):6-12. doi: 10.1016/j.cell.2017.03.005. ABSTRACT Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing. PMID:28340351 | PMC:PMC5511379 | DOI:10.1016/j.cell.2017.03.005

March 25, 2017

AIFM1 mutation presenting with fatal encephalomyopathy and mitochondrial disease in an infant

Morton SU, Prabhu SP, Lidov HGW, Shi J, Anselm I, Brownstein CA, Bainbridge MN, Beggs AH, Vargas SO, Agrawal PB.

Cold Spring Harb Mol Case Stud. 2017 Mar;3(2):a001560. doi: 10.1101/mcs.a001560. ABSTRACT Apoptosis-inducing factor mitochondrion-associated 1 (AIFM1), encoded by the gene AIFM1, has roles in electron transport, apoptosis, ferredoxin metabolism, reactive oxygen species generation, and immune system regulation. Here we describe a patient with a novel AIFM1 variant presenting unusually early in life with mitochondrial disease, rapid deterioration, and death. Autopsy, at the age of 4 mo, revealed features of mitochondrial encephalopathy, myopathy, and involvement of peripheral nerves with axonal degeneration. In addition, there was microvesicular steatosis in the liver, thymic noninvolution, follicular bronchiolitis, and pulmonary arterial medial hypertrophy. This report adds to the clinical and pathological spectrum of disease related to AIFM1 mutations and provides insights into the role of AIFM1 in cellular function. PMID:28299359 | PMC:PMC5334471 | DOI:10.1101/mcs.a001560

March 17, 2017

Publications Question?

Contact Us About BeginNGS