Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies
Opladen T, López-Laso E, Cortès-Saladelafont E, Pearson TS, Sivri HS, Yildiz Y, Assmann B, Kurian MA, Leuzzi V, Heales S, Pope S, Porta F, García-Cazorla A, Honzík T, Pons R, Regal L, Goez H, Artuch R, Hoffmann GF, Horvath G, Thöny B, Scholl-Bürgi S, Burlina A, Verbeek MM, Mastrangelo M, Friedman J, Wassenberg T, Jeltsch K, Kulhánek J, Kuseyri Hübschmann O; International Working Group on Neurotransmitter related Disorders (iNTD).
Orphanet J Rare Dis. 2020 May 26;15(1):126. doi: 10.1186/s13023-020-01379-8.
ABSTRACT
BACKGROUND: Tetrahydrobiopterin (BH
4) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH
4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH
4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world and therefore these guidelines have been developed aiming to harmonize and optimize patient care. Representatives of the International Working Group on Neurotransmitter related Disorders (iNTD) developed the guidelines according to the SIGN (Scottish Intercollegiate Guidelines Network) methodology by evaluating all available evidence for the diagnosis and treatment of BH
4 deficiencies.
CONCLUSION: Although the total body of evidence in the literature was mainly rated as low or very low, these consensus guidelines will help to harmonize clinical practice and to standardize and improve care for BH
4 deficient patients.
PMID:
32456656 | PMC:
PMC7251883 | DOI:
10.1186/s13023-020-01379-8
May 28, 2020
Genetic Neurologic DiseaseNeurogenomicsRare Disease
Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability
Rasheed A, Gumus E, Zaki M, Johnson K, Manzoor H, LaForce G, Ross D, McEvoy-Venneri J, Stanley V, Lee S, Virani A, Ben-Omran T, Gleeson JG, Naz S, Schaffer A.
J Med Genet. 2021 Apr;58(4):237-246. doi: 10.1136/jmedgenet-2020-106849. Epub 2020 May 21.
ABSTRACT
BACKGROUND: Intellectual disability syndromes (IDSs) with or without developmental delays affect up to 3% of the world population. We sought to clinically and genetically characterise a novel IDS segregating in five unrelated consanguineous families.
METHODS: Clinical analyses were performed for eight patients with intellectual disability (ID). Whole-exome sequencing for selected participants followed by Sanger sequencing for all available family members was completed. Identity-by-descent (IBD) mapping was carried out for patients in two Egyptian families harbouring an identical variant. RNA was extracted from blood cells of Turkish participants, followed by cDNA synthesis and real-time PCR for
TTC5.
RESULTS: Phenotype comparisons of patients revealed shared clinical features of moderate-to-severe ID, corpus callosum agenesis, mild ventriculomegaly, simplified gyral pattern, cerebral atrophy, delayed motor and verbal milestones and hypotonia, presenting with an IDS. Four novel homozygous variants in
TTC5: c.629A>G;p.(Tyr210Cys), c.692C>T;p.(Ala231Val), c.787C>T;p.(Arg263Ter) and c.1883C>T;p.(Arg395Ter) were identified in the eight patients from participating families. IBD mapping revealed that c.787C>T;p.(Arg263Ter) is a founder variant in Egypt. Missense variants c.629A>G;p.(Tyr210Cys) and c.692C>T;p.(Ala231Val) disrupt highly conserved residues of TTC5 within the fifth and sixth tetratricopeptide repeat motifs which are required for p300 interaction, while the nonsense variants are predicted to decrease
TTC5 expression. Functional analysis of variant c.1883C>T;p.(Arg395Ter) showed reduced
TTC5 transcript levels in accordance with nonsense-mediated decay.
CONCLUSION: Combining our clinical and molecular data with a recent case report, we identify the core and variable clinical features associated with
TTC5 loss-of-function variants and reveal the requirement for TTC5 in human brain development and health.
PMID:
32439809 | DOI:
10.1136/jmedgenet-2020-106849
May 23, 2020
Closing in on Mechanisms of Open Neural Tube Defects
Lee S, Gleeson JG.
Trends Neurosci. 2020 Jul;43(7):519-532. doi: 10.1016/j.tins.2020.04.009. Epub 2020 May 15.
ABSTRACT
Neural tube defects (NTDs) represent a failure of the neural plate to complete the developmental transition to a neural tube. NTDs are the most common birth anomaly of the CNS. Following mandatory folic acid fortification of dietary grains, a dramatic reduction in the incidence of NTDs was observed in areas where the policy was implemented, yet the genetic drivers of NTDs in humans, and the mechanisms by which folic acid prevents disease, remain disputed. Here, we discuss current understanding of human NTD genetics, recent advances regarding potential mechanisms by which folic acid might modify risk through effects on the epigenome and transcriptome, and new approaches to study refined phenotypes for a greater appreciation of the developmental and genetic causes of NTDs.
PMID:
32423763 | PMC:
PMC7321880 | DOI:
10.1016/j.tins.2020.04.009
May 20, 2020
Neurogenomics
Molecular diagnosis in recessive pediatric neurogenetic disease can help reduce disease recurrence in families
Issa MY, Chechlacz Z, Stanley V, George RD, McEvoy-Venneri J, Belandres D, Elbendary HM, Gaber KR, Nabil A, Abdel-Hamid MS, Zaki MS, Gleeson JG.
BMC Med Genomics. 2020 May 13;13(1):68. doi: 10.1186/s12920-020-0714-1.
ABSTRACT
BACKGROUND: The causes for thousands of individually rare recessive diseases have been discovered since the adoption of next generation sequencing (NGS). Following the molecular diagnosis in older children in a family, parents could use this information to opt for fetal genotyping in subsequent pregnancies, which could inform decisions about elective termination of pregnancy. The use of NGS diagnostic sequencing in families has not been demonstrated to yield benefit in subsequent pregnancies to reduce recurrence. Here we evaluated whether genetic diagnosis in older children in families supports reduction in recurrence of recessive neurogenetic disease.
METHODS: Retrospective study involving families with a child with a recessive pediatric brain disease (rPBD) that underwent NGS-based molecular diagnosis. Prenatal molecular testing was offered to couples in which a molecular diagnosis was made, to help couples seeking to prevent recurrence. With this information, families made decisions about elective termination. Pregnancies that were carried to term were assessed for the health of child and mother, and compared with historic recurrence risk of recessive disease.
RESULTS: Between 2010 and 2016, 1172 families presented with a child a likely rPBD, 526 families received a molecular diagnosis, 91 families returned to the clinic with 101 subsequent pregnancies, and 84 opted for fetal genotyping. Sixty tested negative for recurrence for the biallelic mutation in the fetus, and all, except for one spontaneous abortion, carried to term, and were unaffected at follow-up. Of 24 that genotyped positive for the biallelic mutation, 16 were electively terminated, and 8 were carried to term and showed features of disease similar to that of the older affected sibling(s). Among the 101 pregnancies, disease recurrence in living offspring deviated from the expected 25% to the observed 12% ([95% CI 0·04 to 0·20], p = 0·011).
CONCLUSIONS: Molecular diagnosis in an older child, coupled with prenatal fetal genotyping in subsequent pregnancies and genetic counselling, allows families to make informed decisions to reduce recessive neurogenetic disease recurrence.
PMID:
32404165 | PMC:
PMC7218834 | DOI:
10.1186/s12920-020-0714-1
May 15, 2020
Neurogenomics
Second Tier Molecular Genetic Testing in Newborn Screening for Pompe Disease: Landscape and Challenges
Smith LD, Bainbridge MN, Parad RB, Bhattacharjee A
Int J Neonatal Screen. 2020 Jun;6(2):32. doi: 10.3390/ijns6020032. Epub 2020 Apr 5.
ABSTRACT
Pompe disease (PD) is screened by a two tier newborn screening (NBS) algorithm, the first tier of which is an enzymatic assay performed on newborn dried blood spots (DBS). As first tier enzymatic screening tests have false positive results, an immediate second tier test on the same sample is critical in resolving newborn health status. Two methodologies have been proposed for second tier testing: (a) measurement of enzymatic activities such as of Creatine/Creatinine over alpha-glucosidase ratio, and (b) DNA sequencing (a molecular genetics approach), such as targeted next generation sequencing. (tNGS). In this review, we discuss the tNGS approach, as well as the challenges in providing second tier screening and follow-up care. While tNGS can predict genotype-phenotype effects when known, these advantages may be diminished when the variants are novel, of unknown significance or not discoverable by current test methodologies. Due to the fact that criticisms of screening algorithms that utilize tNGS are based on perceived complexities, including variant detection and interpretation, we clarify the actual limitations and present the rationale that supports optimizing a molecular genetic testing approach with tNGS. Second tier tNGS can benefit clinical decision-making through the use of the initial NBS DBS punch and rapid turn-around time methodology for tNGS, that includes copy number variant analysis, variant effect prediction, and variant ‘cut-off’ tools for the reduction of false positive results. The availability of DNA sequence data will contribute to the improved understanding of genotype-phenotype associations and application of treatment. The ultimate goal of second tier testing should enable the earliest possible diagnosis for the earliest initiation of the most effective clinical interventions in infants with PD.
PMID:
32352041 | PMC:
PMC7189780 | DOI:
10.3390/ijns6020032
May 1, 2020
Novel congenital disorder of O-linked glycosylation caused by GALNT2 loss of function
Zilmer M, Edmondson AC, Khetarpal SA, Alesi V, Zaki MS, Rostasy K, Madsen CG, Lepri FR, Sinibaldi L, Cusmai R, Novelli A, Issa MY, Fenger CD, Abou Jamra R, Reutter H, Briuglia S, Agolini E, Hansen L, Petäjä-Repo UE, Hintze J, Raymond KM, Liedtke K, Stanley V, Musaev D, Gleeson JG, Vitali C, O’Brien WT, Gardella E, Rubboli G, Rader DJ, Schjoldager KT, Møller RS.
Brain. 2020 Apr 1;143(4):1114-1126. doi: 10.1093/brain/awaa063.
ABSTRACT
Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.
PMID:
32293671 | PMC:
PMC7534148 | DOI:
10.1093/brain/awaa063
April 16, 2020
RSRC1 loss-of-function variants cause mild to moderate autosomal recessive intellectual disability
Scala M, Mojarrad M, Riazuddin S, Brigatti KW, Ammous Z, Cohen JS, Hosny H, Usmani MA, Shahzad M, Riazuddin S, Stanley V, Eslahi A, Person RE, Elbendary HM, Comi AM, Poskitt L, Salpietro V, Genomics QS, Rosenfeld JA, Williams KB, Marafi D, Xia F, Biderman Waberski M, Zaki MS, Gleeson J, Puffenberger E, Houlden H, Maroofian R.
April 1, 2020
Neurogenomics
Bi-allelic Variants in the GPI Transamidase Subunit PIGK Cause a Neurodevelopmental Syndrome with Hypotonia, Cerebellar Atrophy, and Epilepsy
Nguyen TTM, Murakami Y, Mobilio S, Niceta M, Zampino G, Philippe C, Moutton S, Zaki MS, James KN, Musaev D, Mu W, Baranano K, Nance JR, Rosenfeld JA, Braverman N, Ciolfi A, Millan F, Person RE, Bruel AL, Thauvin-Robinet C, Ververi A, DeVile C, Male A, Efthymiou S, Maroofian R, Houlden H, Maqbool S, Rahman F, Baratang NV, Rousseau J, St-Denis A, Elrick MJ, Anselm I, Rodan LH, Tartaglia M, Gleeson J, Kinoshita T, Campeau PM.
Am J Hum Genet. 2020 Apr 2;106(4):484-495. doi: 10.1016/j.ajhg.2020.03.001. Epub 2020 Mar 26.
ABSTRACT
Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.
PMID:
32220290 | PMC:
PMC7118585 | DOI:
10.1016/j.ajhg.2020.03.001
March 30, 2020
Neurogenomics
Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease
Friederich MW, Elias AF, Kuster A, Laugwitz L, Larson AA, Landry AP, Ellwood-Digel L, Mirsky DM, Dimmock D, Haven J, Jiang H, MacLean KN, Styren K, Schoof J, Goujon L, Lefrancois T, Friederich M, Coughlin CR 2nd, Banerjee R, Haack TB, Van Hove JLK.
J Inherit Metab Dis. 2020 Sep;43(5):1024-1036. doi: 10.1002/jimd.12232. Epub 2020 Apr 15.
ABSTRACT
Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.
PMID:
32160317 | PMC:
PMC7484123 | DOI:
10.1002/jimd.12232
March 12, 2020
Rare Disease
Maternal Hypertension-Related Genotypes and Congenital Heart Defects
Lei Y, Ludorf KL, Yu X, Benjamin RH, Gu X, Lin Y, Finnell RH, Mitchell LE, Musfee FI, Malik S, Canfield MA, Morrison AC, Hobbs CA, Van Zutphen AR, Fisher S, Agopian AJ.
Am J Hypertens. 2021 Feb 18;34(1):82-91. doi: 10.1093/ajh/hpaa116.
ABSTRACT
BACKGROUND: Maternal hypertension has been associated with congenital heart defect occurrence in several studies. We assessed whether maternal genotypes associated with this condition were also associated with congenital heart defect occurrence.
METHODS: We used data from the National Birth Defects Prevention Study to identify non-Hispanic white (NHW) and Hispanic women with (cases) and without (controls) a pregnancy in which a select simple, isolated heart defect was present between 1999 and 2011. We genotyped 29 hypertension-related single nucleotide polymorphisms (SNPs). We conducted logistic regression analyses separately by race/ethnicity to assess the relationship between the presence of any congenital heart defect and each SNP and an overall blood pressure genetic risk score (GRS). All analyses were then repeated to assess 4 separate congenital heart defect subtypes.
RESULTS: Four hypertension-related variants were associated with congenital heart defects among NHW women (N = 1,568 with affected pregnancies). For example, 1 intronic variant in ARHGAP2, rs633185, was associated with conotruncal defects (odds ratio [OR]: 1.3, 95% confidence interval [CI]: 1.1-1.6). Additionally, 2 variants were associated with congenital heart defects among Hispanic women (N = 489 with affected pregnancies). The GRS had a significant association with septal defects (OR: 2.1, 95% CI: 1.2-3.5) among NHW women.
CONCLUSIONS: We replicated a previously reported association between rs633185 and conotruncal defects. Although additional hypertension-related SNPs were also associated with congenital heart defects, more work is needed to better understand the relationship between genetic risk for maternal hypertension and congenital heart defects occurrence.
PMID:
32710738 | PMC:
PMC7891240 | DOI:
10.1093/ajh/hpaa116
February 18, 2020