Biallelic variants in GTF3C3 result in an autosomal recessive disorder with intellectual disability
De Hayr L, Blok LER, Dias KR, Long J, Begemann A, Moir RD, Willis IM, Mocera M, Siegel G, Steindl K, Evans CA, Zhu Y, Zhang F, Field M, Ma A, Adès L, Josephi-Taylor S, Pfundt R, Zaki MS, Tomoum H, Gregor A, Laube J, Reis A, Maddirevula S, Hashem MO, Zweier M, Alkuraya FS, Maroofian R, Buckley MF, Gleeson JG, Zweier C, Coll-Tané M, Koolen DA, Rauch A, Roscioli T, Schenck A, Harvey RJ. Biallelic variants in GTF3C3 result in an autosomal recessive disorder with intellectual disability. Genet Med. 2024 Nov 7
Genet Med. 2024 Nov 7:101253. doi: 10.1016/j.gim.2024.101253. Online ahead of print.
ABSTRACT
PURPOSE: This study details a novel syndromic form of autosomal recessive intellectual disability resulting from recessive variants in GTF3C3, encoding a key component of the DNA-binding transcription factor IIIC, which has a conserved role in RNA polymerase III-mediated transcription.
METHODS: Exome sequencing, minigene analysis, molecular modeling, RNA polymerase III reporter gene assays, and Drosophila knockdown models were utilized to characterize GTF3C3 variants.
RESULTS: Twelve affected individuals from 7 unrelated families were identified with homozygous or compound heterozygous missense variants in GTF3C3 including c.503C>T p.(Ala168Val), c.1268T>C p.(Leu423Pro), c.1436A>G p.(Tyr479Cys), c.2419C>T p.(Arg807Cys), and c.2420G>A p.(Arg807His). The cohort presented with intellectual disability, variable nonfamilial facial features, motor impairments, seizures, and cerebellar/corpus callosum malformations. Consistent with disruptions in intra- and intermolecular interactions observed in molecular modeling, RNA polymerase III reporter assays confirmed that the majority of missense variants resulted in a loss of function. Minigene analysis of the recurrent c.503C>T p.(Ala168Val) variant confirmed the introduction of a cryptic donor site into exon 4, resulting in mRNA missplicing. Consistent with the clinical features of this cohort, neuronal loss of Gtf3c3 in Drosophila induced seizure-like behavior, motor impairment, and learning deficits.
CONCLUSION: These findings confirm that GTF3C3 variants result in an autosomal recessive form of syndromic intellectual disability.
PMID:
39636576 | DOI:
10.1016/j.gim.2024.101253
November 7, 2024
Genetic Neurologic Disease
Monoallelic loss-of-function variants in GSK3B lead to autism and developmental delay
Tan S, Zhang Q, Zhan R, Luo S, Han Y, Yu B, Muss C, Pingault V, Marlin S, Delahaye A, Peters S, Perne C, Kreiß M, Spataro N, Trujillo-Quintero JP, Racine C, Tran-Mau-Them F, Phornphutkul C, Besterman AD, Martinez J, Wang X, Tian X, Srivastava S, Urion DK, Madden JA, Saif HA, Morrow MM, Begtrup A, Li X, Jurgensmeyer S, Leahy P, Zhou S, Li F, Hu Z, Tan J, Xia K, Guo H. Monoallelic loss-of-function variants in GSK3B lead to autism and developmental delay. Mol Psychiatry. 2024 Oct 29
Mol Psychiatry. 2024 Oct 29. doi: 10.1038/s41380-024-02806-z. Online ahead of print.
ABSTRACT
De novo variants adjacent to the canonical splicing sites or in the well-defined splicing-related regions are more likely to impair splicing but remain under-investigated in autism spectrum disorder (ASD). By analyzing large, recent ASD genome sequencing cohorts, we find a significant burden of de novo potential splicing-disrupting variants (PSDVs) in 5048 probands compared to 4090 unaffected siblings. We identified 55 genes with recurrent de novo PSDVs that were highly intolerant to variation. Forty-six of these genes have not been strongly implicated in ASD or other neurodevelopmental disorders previously, including GSK3B. Through international, multicenter collaborations, we assembled genotype and phenotype data for 15 individuals with GSK3B variants and identified common phenotypes including developmental delay, ASD, sleeping disturbance, and aggressive behavior. Using available single-cell transcriptomic data, we show that GSK3B is enriched in dorsal progenitors and intermediate forms of excitatory neurons in the developing brain. We showed that Gsk3b knockdown in mouse excitatory neurons interferes with dendrite arborization and spine maturation which could not be rescued by de novo missense variants identified from affected individuals. In summary, our findings suggest that PSDVs may play an important role in the genetic etiology of ASD and allow for the prioritization of new ASD candidate genes. Importantly, we show that genetic variation resulting in GSK3B loss-of-function can lead to a neurodevelopmental disorder with core features of ASD and developmental delay.
PMID:
39472663 | DOI:
10.1038/s41380-024-02806-z
October 29, 2024
Genetic Neurologic Disease
Clinical factors associated with genetic diagnosis in suspected neurogenetic disorders in a tertiary care clinic
Wong NR, Klomhaus A, Adams DJ, Schneider BN, Mehta S, DiStefano C, Wilson RB, Martinez-Agosto JA, Jeste SS, Besterman AD. Clinical factors associated with genetic diagnosis in suspected neurogenetic disorders in a tertiary care clinic. Genet Med. 2024 Oct 10
Genet Med. 2024 Oct 10:101252. doi: 10.1016/j.gim.2024.101252. Online ahead of print.
ABSTRACT
PURPOSE: This study aimed to identify phenotypic factors associated with genetic diagnoses in patients with neurodevelopmental disorders and generate a decision tree to assist clinicians in identifying patients most likely to receive a positive result on genetic testing.
METHODS: We retrospectively reviewed the charts of 316 patients evaluated in a neurodevelopmental clinic between 2014 and 2019. Patients were categorized based on genetic test results. Analyses were performed to identify variables that discriminate between patients with and without a genetic diagnosis.
RESULTS: Patients with a genetic diagnosis were more likely to be female and have a history of motor delay, hypotonia, congenital heart disease, and early intervention. Classification and regression tree analysis revealed that 75% of patients with motor delay had a genetic diagnosis. In patients without motor delay, hypotonia, age of walking, and age at initial evaluation were important indicators of a genetic diagnosis.
CONCLUSION: Our findings suggest that motor delay and hypotonia are associated with genetic diagnoses in children with neurodevelopmental disorders. The decision tree highlights patient subsets at greater risk and suggests possible phenotypic screens. Future studies could develop validated decision trees based on phenotypic data to assist clinicians in stratifying patients for genetic testing.
PMID:
39395029 | DOI:
10.1016/j.gim.2024.101252
October 10, 2024
Genetic Neurologic DiseaseNeurogenomics
Clinical and Molecular Profiles of a Cohort of Egyptian Patients with Collagen VI-Related Dystrophy
Sharaf-Eldin WE, Rafat K, Issa MY, Elbendary HM, Eissa NR, Hawaary B, Gaboon NEA, Maroofian R, Gleeson JG, Essawi ML, Zaki MS. Clinical and Molecular Profiles of a Cohort of Egyptian Patients with Collagen VI-Related Dystrophy. J Mol Neurosci. 2024 Oct 5
J Mol Neurosci. 2024 Oct 5;74(4):93. doi: 10.1007/s12031-024-02266-8.
ABSTRACT
Collagen VI-related dystrophies (COL6-RD) display a wide spectrum of disease severity and genetic variability ranging from mild Bethlem myopathy (BM) to severe Ullrich congenital muscular dystrophy (UCMD) and the intermediate severities in between with dual modes of inheritance, dominant and recessive. In the current study, next-generation sequencing demonstrated potential variants in the genes coding for the three alpha chains of collagen VI (COL6A1, COL6A2, or COL6A3) in a cohort of Egyptian patients with progressive muscle weakness (n = 23). Based on the age of disease onset and the patient clinical course, subjects were diagnosed as follows: 12 with UCMD, 8 with BM, and 3 with intermediate disease form. Fourteen pathogenic variants, including 5 novel alterations, were reported in the enrolled subjects. They included 3 missense, 3 frameshift, and 6 splicing variants in 4, 3, and 6 families, respectively. In addition, a nonsense variant in a single family and an inframe variant in 3 different families were also detected. Recessive and dominant modes of inheritance were recorded in 9 and 8 families, respectively. According to ACMG guidelines, variants were classified as pathogenic (n = 7), likely pathogenic (n = 4), or VUS (n = 3) with significant pathogenic potential. To our knowledge, the study provided the first report of the clinical and genetic findings of a cohort of Egyptian patients with collagen VI deficiency. Inter- and intra-familial clinical variability was evident among the study cohort.
PMID:
39367186 | DOI:
10.1007/s12031-024-02266-8
October 5, 2024
Genetic Neurologic Disease
Clinical and genetic delineation of autosomal recessive and dominant ACTL6B-related developmental brain disorders
Cali E, Quirin T, Rocca C, Efthymiou S, Riva A, Marafi D, Zaki MS, Suri M, Dominguez R, Elbendary HM, Alavi S, Abdel-Hamid MS, Morsy H, Mau-Them FT, Nizon M, Tesner P, Ryba L, Zafar F, Rana N, Saadi NW, Firoozfar Z, Gencpinar P, Unay B, Ustun C, Bruel AL, Coubes C, Stefanich J, Sezer O, Agolini E, Novelli A, Vasco G, Lettori D, Milh M, Villard L, Zeidler S, Opperman H, Strehlow V, Issa MY, El Khassab H, Chand P, Ibrahim S, Nejad-Rashidi A, Miryounesi M, Larki P, Morrison J, Cristian I, Thiffault I, Bertsch NL, Noh GJ, Pappas J, Moran E, Marinakis NM, Traeger-Synodinos J, Hosseini S, Abbaszadegan MR, Caumes R, Vissers LELM, Neshatdoust M, Montazer MZ, El Fahime E, Canavati C, Kamal L, Kanaan M, Askander O, Voinova V, Levchenko O, Haider S, Halbach SS, Maia ER, Mansoor S, Vivek J, Tawde S, Santhosh R Challa V, Gowda VK, Srinivasan VM, Victor LA, Pinero-Banos B, Hague J, Ei-Awady HA, Maria de Miranda Henriques-Souza A, Cheema HA, Anjum MN, Idkaidak S, Alqarajeh F, Atawneh O, Mor-Shaked H, Harel T, Zifarelli G, Bauer P, Kok F, Kitajima JP, Monteiro F, Josahkian J, Lesca G, Chatron N, Ville D, Murphy D, Neul JL, Mullegama SV, Begtrup A, Herman I, Mitani T, Posey JE, Tay CG, Javed I, Carr L, Kanani F, Beecroft F, Hane L, Abdelkreem E, Macek M, Bispo L, Elmaksoud MA, Hashemi-Gorji F, Pehlivan D, Amor DJ, Jamra RA, Chung WK, Ghayoor EK, Campeau P, Alkuraya FS, Pagnamenta AT, Gleeson J, Lupski JR, Striano P, Moreno-De-Luca A, Lafontaine DLJ, Houlden H, Maroofian R. Clinical and genetic delineation of autosomal recessive and dominant ACTL6B-related developmental brain disorders. Genet Med. 2024 Sep 10
Genet Med. 2024 Sep 10:101251. doi: 10.1016/j.gim.2024.101251. Online ahead of print.
ABSTRACT
PURPOSE: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear.
METHODS: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis.
RESULTS: Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability (GDD/ID), infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe GDD/ID, absent speech, and autistic features, while seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, in particular in pre-rRNA processing.
CONCLUSION: This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of ‘ribosomopathies’.
PMID:
39275948 | DOI:
10.1016/j.gim.2024.101251
September 10, 2024
Genetic Neurologic Disease
Clinical and neuroradiological spectrum of biallelic variants in NOTCH3
Iruzubieta P, Alves CAPF, Al Shamsi AM, ElGhazali G, Zaki MS, Pinelli L, Lopergolo D, Cho BPH, Jolly AA, Al Futaisi A, Al-Amrani F, Galli J, Fazzi E, Vulin K, Barajas-Olmos F, Hengel H, Aljamal BM, Nasr V, Assarzadegan F, Ragno M, Trojano L, Ojeda NM, Çakar A, Bianchi S, Pescini F, Poggesi A, Al Tenalji A, Aziz M, Mohammad R, Chedrawi A, De Stefano N, Zifarelli G, Schöls L, Haack TB, Rebelo A, Zuchner S, Koc F, Griffiths LR, Orozco L, Helmes KG, Babaei M, Bauer P, Chan Jeong W, Karimiani EG, Schmidts M, Gleeson JG, Chung WK, Alkuraya FS, Shalbafan B, Markus HS, Houlden H, Maroofian R.
EBioMedicine. 2024 Aug 26;107:105297. doi: 10.1016/j.ebiom.2024.105297. Online ahead of print.
ABSTRACT
BACKGROUND: NOTCH3 encodes a transmembrane receptor critical for vascular smooth muscle cell function. NOTCH3 variants are the leading cause of hereditary cerebral small vessel disease (SVD). While monoallelic cysteine-involving missense variants in NOTCH3 are well-studied in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), patients with biallelic variants in NOTCH3 are extremely rare and not well characterised.
METHODS: In this study, we present clinical and genetic data from 25 patients with biallelic NOTCH3 variants and conduct a literature review of another 25 cases (50 patients in total). Brain magnetic resonance imaging (MRI) were analysed by expert neuroradiologists to better understand the phenotype associated with biallelic NOTCH3 variants.
FINDINGS: Our systematic analyses verified distinct genotype-phenotype correlations for the two types of biallelic variants in NOTCH3. Biallelic loss-of-function variants (26 patients) lead to a neurodevelopmental disorder characterised by spasticity, childhood-onset stroke, and periatrial white matter volume loss resembling periventricular leukomalacia. Conversely, patients with biallelic cysteine-involving missense variants (24 patients) fall within CADASIL spectrum phenotype with early adulthood onset stroke, dementia, and deep white matter lesions without significant volume loss. White matter lesion volume is comparable between patients with biallelic cysteine-involving missense variants and individuals with CADASIL. Notably, monoallelic carriers of loss-of-function variants are predominantly asymptomatic, with only a few cases reporting nonspecific headaches.
INTERPRETATION: We propose a NOTCH3-SVD classification depending on dosage and variant type. This study not only expands our knowledge of biallelic NOTCH3 variants but also provides valuable insight into the underlying mechanisms of the disease, contributing to a more comprehensive understanding of NOTCH3-related SVD.
FUNDING: The Wellcome Trust, the MRC.
PMID:
39191170 | DOI:
10.1016/j.ebiom.2024.105297
August 26, 2024
Genetic Neurologic Disease
Antisense oligonucleotide therapy in an individual with KIF1A-associated neurological disorder
Ziegler A, Carroll J, Bain JM, Sands TT, Fee RJ, Uher D, Kanner CH, Montes J, Glass S, Douville J, Mignon L, Gleeson JG, Crooke ST, Chung WK.
Nat Med. 2024 Aug 9. doi: 10.1038/s41591-024-03197-y. Online ahead of print.
ABSTRACT
KIF1A-associated neurological disorder (KAND) is a neurodegenerative and often lethal ultrarare disease with a wide phenotypic spectrum associated with largely heterozygous de novo missense variants in KIF1A. Antisense oligonucleotide treatments represent a promising approach for personalized treatments in ultrarare diseases. Here we report the case of one patient with a severe form of KAND characterized by refractory spells of behavioral arrest and carrying a p.Pro305Leu variant in KIF1A, who was treated with intrathecal injections of an allele-specific antisense oligonucleotide specifically designed to degrade the mRNA from the pathogenic allele. The first intrathecal administration was complicated by an epidural cerebrospinal fluid collection, which resolved spontaneously. Otherwise, the antisense oligonucleotide was safe and well tolerated over the 9-month treatment. Most outcome measures, including severity of the spells of behavioral arrest, number of falls and quality of life, improved. There was little change in the 6-min Walk Test distance, but qualitative changes in gait resulting in meaningful reductions in falls and increasing independence were observed. Cognitive performance was stable and did not degenerate over time. Our findings provide preliminary insights on the safety and efficacy of an allele-specific antisense oligonucleotide as a possible treatment for KAND.
PMID:
39122967 | DOI:
10.1038/s41591-024-03197-y
August 9, 2024
Genetic Neurologic Disease
MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature
Karayol R, Borroto MC, Haghshenas S, Namasivayam A, Reilly J, Levy MA, Relator R, Kerkhof J, McConkey H, Shvedunova M, Petersen AK, Magnussen K, Zweier C, Vasileiou G, Reis A, Savatt JM, Mulligan MR, Bicknell LS, Poke G, Abu-El-Haija A, Duis J, Hannig V, Srivastava S, Barkoudah E, Hauser NS, van den Born M, Hamiel U, Henig N, Baris Feldman H, McKee S, Krapels IPC, Lei Y, Todorova A, Yordanova R, Atemin S, Rogac M, McConnell V, Chassevent A, Barañano KW, Shashi V, Sullivan JA, Peron A, Iascone M, Canevini MP, Friedman J, Reyes IA, Kierstein J, Shen JJ, Ahmed FN, Mao X, Almoguera B, Blanco-Kelly F, Platzer K, Treu AB, Quilichini J, Bourgois A, Chatron N, Januel L, Rougeot C, Carere DA, Monaghan KG, Rousseau J, Myers KA, Sadikovic B, Akhtar A, Campeau PM.
Am J Hum Genet. 2024 May 28:S0002-9297(24)00164-2. doi: 10.1016/j.ajhg.2024.05.001. Online ahead of print.
ABSTRACT
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.
PMID:
38815585 | DOI:
10.1016/j.ajhg.2024.05.001
July 11, 2024
Genetic Neurologic Disease
Sunflower Syndrome: A Survey of Provider Awareness and Management Preferences
Baumer FM, Julich K, Friedman J, Nespeca M, Thiele EA, Bhatia S, Joshi C.
Pediatr Neurol. 2023 Nov 30;152:177-183. doi: 10.1016/j.pediatrneurol.2023.11.013. Online ahead of print.
ABSTRACT
BACKGROUND: Sunflower syndrome is a rare photosensitive pediatric epilepsy characterized by stereotyped hand-waving in response to bright lights. These stereotyped movements with maintained awareness can be mistaken for a movement disorder. This study assessed neurology providers’ diagnostic reasoning, evaluation, and treatment of Sunflower syndrome.
METHODS: A 32-question anonymized electronic survey, including a clinical vignette and video of hand-waving in sunlight, was distributed to child neurology providers to assess (1) initial diagnosis and evaluation based on clinical information, (2) updated diagnosis and management after electroencephalography (EEG), and (3) prior experience with Sunflower syndrome.
RESULTS: Among 277 viewed surveys, 211 respondents provided information about initial diagnosis and evaluation, 200 about updated diagnosis, 191 about management, and 189 about prior clinical experience. Most providers (135, 64%) suspected seizure, whereas fewer suspected movement disorders (29, 14%) or were unsure of the diagnosis (37, 22%). EEG was recommended by 180 (85%). After EEG, 189 (95%) diagnosed epilepsy, 111 of whom specifically diagnosed Sunflower syndrome. The majority (149, 78%) recommended antiseizure medications (ASMs) and sun avoidance (181, 95%). Only 103 (55%) had managed Sunflower syndrome. Epileptologists and those with prior clinical experience were more likely to suspect a seizure, order an EEG, and offer ASMs than those without prior experience.
CONCLUSIONS: Although many providers had not managed Sunflower syndrome, the majority recognized this presentation as concerning for epilepsy. Epilepsy training and prior clinical experience are associated with improved recognition and appropriate treatment. Educational initiatives that increase awareness of Sunflower syndrome may improve patient care.
PMID:
38295719 | DOI:
10.1016/j.pediatrneurol.2023.11.013
November 30, 2023
Genetic Neurologic DiseaseNeurogenomics
ARF1-related disorder: phenotypic and molecular spectrum
de Sainte Agathe JM, Pode-Shakked B, Naudion S, Michaud V, Arveiler B, Fergelot P, Delmas J, Keren B, Poirsier C, Alkuraya FS, Tabarki B, Bend E, Davis K, Bebin M, Thompson ML, Bryant EM, Wagner M, Hannibal I, Lenberg J, Krenn M, Wigby KM, Friedman JR, Iascone M, Cereda A, Miao T, LeGuern E, Argilli E, Sherr E, Caluseriu O, Tidwell T, Bayrak-Toydemir P, Hagedorn C, Brugger M, Vill K, Morneau-Jacob FD, Chung W, Weaver KN, Owens JW, Husami A, Chaudhari BP, Stone BS, Burns K, Li R, de Lange IM, Biehler M, Ginglinger E, Gérard B, Stottmann RW, Trimouille A.
J Med Genet. 2023 Apr 25:jmg-2022-108803. doi: 10.1136/jmg-2022-108803. Online ahead of print.
ABSTRACT
PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder.
METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated.
RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder.
CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.
PMID:
37185208 DOI:
10.1136/jmg-2022-108803
April 25, 2023
Genetic Neurologic Disease