Scientific Publications

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis blandit elit metus, mattis consectetur eros fermentum id. Cras lorem purus, finibus vel aliquam ac, porta in libero. Cras lorem purus, finibus vel aliquam ac, porta in libero.

  • Results Per Page

324 Results

2018

Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease

Gross AM, Ajay SS, Rajan V, Brown C, Bluske K, Burns NJ, Chawla A, Coffey AJ, Malhotra A, Scocchia A, Thorpe E, Dzidic N, Hovanes K, Sahoo T, Dolzhenko E, Lajoie B, Khouzam A, Chowdhury S, Belmont J, Roller E, Ivakhno S, Tanner S, McEachern J, Hambuch T, Eberle M, Hagelstrom RT, Bentley DR, Perry DL, Taft RJ.

Genet Med. 2019 May;21(5):1121-1130. doi: 10.1038/s41436-018-0295-y. Epub 2018 Oct 8. ABSTRACT PURPOSE: Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test. METHODS: We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases. RESULTS: We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs. CONCLUSION: Robust identification of CNVs by GS is possible within a clinical testing environment. PMID:30293986 | PMC:PMC6752263 | DOI:10.1038/s41436-018-0295-y

October 9, 2018

Heterozygous WNT1 variant causing a variable bone phenotype

Alhamdi S, Lee YC, Chowdhury S, Byers PH, Gottschalk M, Taft RJ, Joeng KS, Lee BH, Bird LM.

Am J Med Genet A. 2018 Nov;176(11):2419-2424. doi: 10.1002/ajmg.a.40347. Epub 2018 Sep 24. ABSTRACT Osteogenesis imperfecta (OI) is a family of heritable disorders of bone fragility. Most individuals with OI have mutations in the genes encoding type I collagen; at least 17 other genes have been associated with OI. Biallelic loss-of-function mutations in WNT1 cause severe OI. Heterozygous missense variants in WNT1 are responsible for early-onset osteoporosis with variable bone phenotypes. Herein, we report a third-generation family with four affected individuals, some presenting with multiple low-impact fractures in childhood and others presenting with early-onset osteoporosis without a striking fracture history. A WNT1 variant (c. 1051 > C; p.Trp351Arg) was identified in the proband and segregated with a bone phenotype in three additional family members, consistent with autosomal dominant inheritance. In the proband, whole genome sequencing also revealed a de novo duplication (434 kb) of 22q11.2 that involves 25 genes, 4 of which are associated with human disease when haploinsufficient. Though smaller than the typical (1.5 Mb) 22q11.2 duplication, the duplication in the proband may be responsible for additional nonosseous aspects of his phenotype (hypotonia, developmental delay, small genitalia, strabismus, and depression in preadolescence). This case demonstrates the variability of bone phenotype conferred by a WNT1 variant and extends the spectrum of bone phenotypes associated with heterozygous WNT1 mutations. PMID:30246918 | PMC:PMC6289778 | DOI:10.1002/ajmg.a.40347

September 25, 2018

Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma

Teresa Purzner, James Purzner, Taylor Buckstaff, Giorgio Cozza, Sharareh Gholamin, Jessica M Rusert, Tom A Hartl, John Sanders, Nicholas Conley, Xuecai Ge, Marc Langan, Vijay Ramaswamy, Lauren Ellis, Ulrike Litzenburger, Sara Bolin, Johanna Theruvath, Ryan Nitta, Lin Qi, Xiao-Nan Li, Gordon Li, Michael D Taylor, Robert J Wechsler-Reya, Lorenzo A Pinna, Yoon-Jae Cho, Margaret T Fuller, Joshua E Elias, Matthew P Scott

Sci Signal. 2018 Sep 11;11(547):eaau5147. doi: 10.1126/scisignal.aau5147.

ABSTRACT

A major limitation of targeted cancer therapy is the rapid emergence of drug resistance, which often arises through mutations at or downstream of the drug target or through intrinsic resistance of subpopulations of tumor cells. Medulloblastoma (MB), the most common pediatric brain tumor, is no exception, and MBs that are driven by sonic hedgehog (SHH) signaling are particularly aggressive and drug-resistant. To find new drug targets and therapeutics for MB that may be less susceptible to common resistance mechanisms, we used a developmental phosphoproteomics approach in murine granule neuron precursors (GNPs), the developmental cell of origin of MB. The protein kinase CK2 emerged as a driver of hundreds of phosphorylation events during the proliferative, MB-like stage of GNP growth, including the phosphorylation of three of the eight proteins commonly amplified in MB. CK2 was critical to the stabilization and activity of the transcription factor GLI2, a late downstream effector in SHH signaling. CK2 inhibitors decreased the viability of primary SHH-type MB patient cells in culture and blocked the growth of murine MB tumors that were resistant to currently available Hh inhibitors, thereby extending the survival of tumor-bearing mice. Because of structural interactions, one CK2 inhibitor (CX-4945) inhibited both wild-type and mutant CK2, indicating that this drug may avoid at least one common mode of acquired resistance. These findings suggest that CK2 inhibitors may be effective for treating patients with MB and show how phosphoproteomics may be used to gain insight into developmental biology and pathology.

PMID:30206138 | PMC:PMC6475502 | DOI:10.1126/scisignal.aau5147

September 13, 2018
Neuro-Oncology

De novo truncating variants in the intronless IRF2BPL are responsible for developmental epileptic encephalopathy

Tran Mau-Them F, Guibaud L, Duplomb L, Keren B, Lindstrom K, Marey I, Mochel F, van den Boogaard MJ, Oegema R, Nava C, Masurel A, Jouan T, Jansen FE, Au M, Chen AH, Cho M, Duffourd Y, Lozier E, Konovalov F, Sharkov A, Korostelev S, Urteaga B, Dickson P, Vera M, Martínez-Agosto JA, Begemann A, Zweier M, Schmitt-Mechelke T, Rauch A, Philippe C, van Gassen K, Nelson S, Graham JM Jr, Friedman J, Faivre L, Lin HJ, Thauvin-Robinet C, Vitobello A.

Genet Med. 2019 Apr;21(4):1008-1014. doi: 10.1038/s41436-018-0143-0. Epub 2018 Aug 31. ABSTRACT PURPOSE: Developmental and epileptic encephalopathies (DEEs) are severe clinical conditions characterized by stagnation or decline of cognitive and behavioral abilities preceded, accompanied or followed by seizures. Because DEEs are clinically and genetically heterogeneous, next-generation sequencing, especially exome sequencing (ES), is becoming a first-tier strategy to identify the molecular etiologies of these disorders. METHODS: We combined ES analysis and international data sharing. RESULTS: We identified 11 unrelated individuals with DEE and de novo heterozygous truncating variants in the interferon regulatory factor 2-binding protein-like gene (IRF2BPL). The 11 individuals allowed for delineation of a consistent neurodevelopmental disorder characterized by mostly normal initial psychomotor development followed by severe global neurological regression and epilepsy with nonspecific electroencephalogram (EEG) abnormalities and variable central nervous system (CNS) anomalies. IRF2BPL, also known as enhanced at puberty protein 1 (EAP1), encodes a transcriptional regulator containing a C-terminal RING-finger domain common to E3 ubiquitin ligases. This domain is required for its repressive and transactivating transcriptional properties. The variants identified are expected to encode a protein lacking the C-terminal RING-finger domain. CONCLUSIONS: These data support the causative role of truncating IRF2BPL variants in pediatric neurodegeneration and expand the spectrum of transcriptional regulators identified as molecular factors implicated in genetic developmental and epileptic encephalopathies. PMID:30166628 | DOI:10.1038/s41436-018-0143-0

September 1, 2018

Genetic variants in components of the NALCN-UNC80-UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies)

Bramswig NC, Bertoli-Avella AM, Albrecht B, Al Aqeel AI, Alhashem A, Al-Sannaa N, Bah M, Bröhl K, Depienne C, Dorison N, Doummar D, Ehmke N, Elbendary HM, Gorokhova S, Héron D, Horn D, James K, Keren B, Kuechler A, Ismail S, Issa MY, Marey I, Mayer M, McEvoy-Venneri J, Megarbane A, Mignot C, Mohamed S, Nava C, Philip N, Ravix C, Rolfs A, Sadek AA, Segebrecht L, Stanley V, Trautman C, Valence S, Villard L, Wieland T, Engels H, Strom TM, Zaki MS, Gleeson JG, Lüdecke HJ, Bauer P, Wieczorek D.

Hum Genet. 2018 Sep;137(9):753-768. doi: 10.1007/s00439-018-1929-5. Epub 2018 Aug 23. ABSTRACT NALCN is a conserved cation channel, which conducts a permanent sodium leak current and regulates resting membrane potential and neuronal excitability. It is part of a large ion channel complex, the “NALCN channelosome”, consisting of multiple proteins including UNC80 and UNC79. The predominant neuronal expression pattern and its function suggest an important role in neuronal function and disease. So far, biallelic NALCN and UNC80 variants have been described in a small number of individuals leading to infantile hypotonia, psychomotor retardation, and characteristic facies 1 (IHPRF1, OMIM 615419) and 2 (IHPRF2, OMIM 616801), respectively. Heterozygous de novo NALCN missense variants in the S5/S6 pore-forming segments lead to congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD, OMIM 616266) with some clinical overlap. In this study, we present detailed clinical information of 16 novel individuals with biallelic NALCN variants, 1 individual with a heterozygous de novo NALCN missense variant and an interesting clinical phenotype without contractures, and 12 individuals with biallelic UNC80 variants. We report for the first time a missense NALCN variant located in the predicted S6 pore-forming unit inherited in an autosomal-recessive manner leading to mild IHPRF1. We show evidence of clinical variability, especially among IHPRF1-affected individuals, and discuss differences between the IHPRF1- and IHPRF2 phenotypes. In summary, we provide a comprehensive overview of IHPRF1 and IHPRF2 phenotypes based on the largest cohort of individuals reported so far and provide additional insights into the clinical phenotypes of these neurodevelopmental diseases to help improve counseling of affected families. PMID:30167850 | PMC:PMC6671679 | DOI:10.1007/s00439-018-1929-5

September 1, 2018

Paroxysmal motor disorders: expanding phenotypes lead to coalescing genotypes

Zima L, Ceulemans S, Reiner G, Galosi S, Chen D, Sahagian M, Haas RH, Hyland K, Friedman J.

Ann Clin Transl Neurol. 2018 Jul 17;5(8):996-1010. doi: 10.1002/acn3.597. eCollection 2018 Aug.

ABSTRACT

Paroxysmal movement disorders encompass varied motor phenomena. Less recognized features and wide phenotypic and genotypic heterogeneity are impediments to straightforward molecular diagnosis. We describe a family with episodic ataxia type 1, initially mis-characterized as paroxysmal dystonia to illustrate this diagnostic challenge. We summarize clinical features in affected individuals to highlight underappreciated aspects and provide comprehensive phenotypic description of the rare familial KCNA1 mutation. Delayed diagnosis in this family is emblematic of the broader challenge of diagnosing other paroxysmal motor disorders. We summarize genotypic and phenotypic overlap and provide a suggested diagnostic algorithm for approaching patients with these conditions.

PMID:30128325 | PMC:PMC6093839 | DOI:10.1002/acn3.597

August 22, 2018
Genetic Neurologic DiseaseNeurogenomics

Genomic sequencing in acutely ill infants: what will it take to demonstrate clinical value?

Grosse SD, Farnaes L.

Genet Med. 2019 Feb;21(2):269-271. doi: 10.1038/s41436-018-0124-3. Epub 2018 Aug 13. NO ABSTRACT PMID:30100610 | PMC:PMC6691721 | DOI:10.1038/s41436-018-0124-3

August 14, 2018

Biallelic Mutations in ADPRHL2, Encoding ADP-Ribosylhydrolase 3, Lead to a Degenerative Pediatric Stress-Induced Epileptic Ataxia Syndrome

Ghosh SG, Becker K, Huang H, Dixon-Salazar T, Chai G, Salpietro V, Al-Gazali L, Waisfisz Q, Wang H, Vaux KK, Stanley V, Manole A, Akpulat U, Weiss MM, Efthymiou S, Hanna MG, Minetti C, Striano P, Pisciotta L, De Grandis E, Altmüller J, Nürnberg P, Thiele H, Yis U, Okur TD, Polat AI, Amiri N, Doosti M, Karimani EG, Toosi MB, Haddad G, Karakaya M, Wirth B, van Hagen JM, Wolf NI, Maroofian R, Houlden H, Cirak S, Gleeson JG. 

Am J Hum Genet. 2018 Sep 6;103(3):431-439. doi: 10.1016/j.ajhg.2018.07.010. Epub 2018 Aug 9. ABSTRACT ADP-ribosylation, the addition of poly-ADP ribose (PAR) onto proteins, is a response signal to cellular challenges, such as excitotoxicity or oxidative stress. This process is catalyzed by a group of enzymes referred to as poly(ADP-ribose) polymerases (PARPs). Because the accumulation of proteins with this modification results in cell death, its negative regulation restores cellular homeostasis: a process mediated by poly-ADP ribose glycohydrolases (PARGs) and ADP-ribosylhydrolase proteins (ARHs). Using linkage analysis and exome or genome sequencing, we identified recessive inactivating mutations in ADPRHL2 in six families. Affected individuals exhibited a pediatric-onset neurodegenerative disorder with progressive brain atrophy, developmental regression, and seizures in association with periods of stress, such as infections. Loss of the Drosophila paralog Parg showed lethality in response to oxidative challenge that was rescued by human ADPRHL2, suggesting functional conservation. Pharmacological inhibition of PARP also rescued the phenotype, suggesting the possibility of postnatal treatment for this genetic condition. PMID:30100084 | PMC:PMC6128219 | DOI:10.1016/j.ajhg.2018.07.010

August 14, 2018

Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures

Lee JS, Adler L, Karathia H, Carmel N, Rabinovich S, Auslander N, Keshet R, Stettner N, Silberman A, Agemy L, Helbling D, Eilam R, Sun Q, Brandis A, Malitsky S, Itkin M, Weiss H, Pinto S, Kalaora S, Levy R, Barnea E, Admon A, Dimmock D, Stern-Ginossar N, Scherz A, Nagamani SCS, Unda M, Wilson DM 3rd, Elhasid R, Carracedo A, Samuels Y, Hannenhalli S, Ruppin E, Erez A.

Cell. 2018 Sep 6;174(6):1559-1570.e22. doi: 10.1016/j.cell.2018.07.019. Epub 2018 Aug 9. ABSTRACT The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed “UC dysregulation” (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response. PMID:30100185 | PMC:PMC6225773 | DOI:10.1016/j.cell.2018.07.019

August 14, 2018

Mutations in LNPK, Encoding the Endoplasmic Reticulum Junction Stabilizer Lunapark, Cause a Recessive Neurodevelopmental Syndrome

Breuss MW, Nguyen A, Song Q, Nguyen T, Stanley V, James KN, Musaev D, Chai G, Wirth SA, Anzenberg P, George RD, Johansen A, Ali S, Zia-Ur-Rehman M, Sultan T, Zaki MS,Gleeson JG. 

Am J Hum Genet. 2018 Aug 2;103(2):296-304. doi: 10.1016/j.ajhg.2018.06.011. Epub 2018 Jul 19. ABSTRACT The dynamic shape of the endoplasmic reticulum (ER) is a reflection of its wide variety of critical cell biological functions. Consequently, perturbation of ER-shaping proteins can cause a range of human phenotypes. Here, we describe three affected children (from two consanguineous families) who carry homozygous loss-of-function mutations in LNPK (previously known as KIAA1715); this gene encodes lunapark, which is proposed to serve as a curvature-stabilizing protein within tubular three-way junctions of the ER. All individuals presented with severe psychomotor delay, intellectual disability, hypotonia, epilepsy, and corpus callosum hypoplasia, and two of three showed mild cerebellar hypoplasia and atrophy. Consistent with a proposed role in neurodevelopmental disease, LNPK was expressed during brain development in humans and mice and was present in neurite-like processes in differentiating human neural progenitor cells. Affected cells showed the absence of full-length lunapark, aberrant ER structures, and increased luminal mass density. Together, our results implicate the ER junction stabilizer lunapark in establishing the corpus callosum. PMID:30032983 | PMC:PMC6080764 | DOI:10.1016/j.ajhg.2018.06.011

July 24, 2018

Publications Question?

Contact Us About BeginNGS