Scientific Publications

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis blandit elit metus, mattis consectetur eros fermentum id. Cras lorem purus, finibus vel aliquam ac, porta in libero. Cras lorem purus, finibus vel aliquam ac, porta in libero.

  • Results Per Page

322 Results

2021

Capsule carbohydrate structure determines virulence in Acinetobacter baumannii

Talyansky Y, Nielsen TB, Yan J, Carlino-Macdonald U, Di Venanzio G, Chakravorty S, Ulhaq A, Feldman MF, Russo TA, Vinogradov E, Luna B, Wright MS, Adams MD, Spellberg B.

PLoS Pathog. 2021 Feb 2;17(2):e1009291. doi: 10.1371/journal.ppat.1009291. eCollection 2021 Feb. ABSTRACT Acinetobacter baumannii is a highly antibiotic-resistant bacterial pathogen for which novel therapeutic approaches are needed. Unfortunately, the drivers of virulence in A. baumannii remain uncertain. By comparing genomes among a panel of A. baumannii strains we identified a specific gene variation in the capsule locus that correlated with altered virulence. While less virulent strains possessed the intact gene gtr6, a hypervirulent clinical isolate contained a spontaneous transposon insertion in the same gene, resulting in the loss of a branchpoint in capsular carbohydrate structure. By constructing isogenic gtr6 mutants, we confirmed that gtr6-disrupted strains were protected from phagocytosis in vitro and displayed higher bacterial burden and lethality in vivo. Gtr6+ strains were phagocytized more readily and caused lower bacterial burden and no clinical illness in vivo. We found that the CR3 receptor mediated phagocytosis of gtr6+, but not gtr6-, strains in a complement-dependent manner. Furthermore, hypovirulent gtr6+ strains demonstrated increased virulence in vivo when CR3 function was abrogated. In summary, loss-of-function in a single capsule assembly gene dramatically altered virulence by inhibiting complement deposition and recognition by phagocytes across multiple A. baumannii strains. Thus, capsular structure can determine virulence among A. baumannii strains by altering bacterial interactions with host complement-mediated opsonophagocytosis. PMID:33529209 | PMC:PMC7880449 | DOI:10.1371/journal.ppat.1009291

February 2, 2021

A Case of UDP-Galactose 4′-Epimerase Deficiency Associated with Dyshematopoiesis and Atrioventricular Valve Malformations: An Exceptional Clinical Phenotype Explained by Altered N-Glycosylation with Relative Preservation of the Leloir Pathway

Febres-Aldana CA, Pelaez L, Wright MS, Maher OM, Febres-Aldana AJ, Sasaki J, Jayakar P, Jayakar A, Diaz-Barbosa M, Janvier M, Totapally B, Salyakina D, Galvez-Silva JR.

Mol Syndromol. 2020 Dec;11(5-6):320-329. doi: 10.1159/000511343. Epub 2020 Oct 29. ABSTRACT The generalized form of UDP-galactose-4′-epimerase (GALE) deficiency causes hypotonia, failure to thrive, cataracts, and liver failure. Individuals with non-generalized forms may remain asymptomatic with uncertain long-term outcomes. We report a 2-year-old child compound heterozygous for GALE p.R51W/p.G237D who never developed symptoms of classic galactosemia but has a history of congenital combined mitral and tricuspid valve malformation and pyloric stenosis, and presented with pancytopenia. Variant pathogenicity was supported by predictive computational tools and decreased GALE activity measured in erythrocytes. GALE function extends to the biosynthesis of glycans by epimerization of UDP-N-acetyl-galactosamine and -glucosamine. Interrogation of the Gene Ontology consortium database revealed several putative proteins involved in normal hematopoiesis and atrioventricular valve morphogenesis, requiring N-glycosylation for adequate functionality. We hypothesize that by limiting substrate supply due to GALE deficiency, alterations in N-linked protein glycosylation can explain the patient’s phenotype. PMID:33510604 | PMC:PMC7802442 | DOI:10.1159/000511343

January 29, 2021

Brain MR patterns in inherited disorders of monoamine neurotransmitters: An analysis of 70 patients

Kuseyri Hübschmann O, Mohr A, Friedman J, Manti F, Horvath G, Cortès-Saladelafont E, Mercimek-Andrews S, Yildiz Y, Pons R, Kulhánek J, Oppebøen M, Koht JA, Podzamczer-Valls I, Domingo-Jimenez R, Ibáñez S, Alcoverro-Fortuny O, Gómez-Alemany T, de Castro P, Alfonsi C, Zafeiriou DI, López-Laso E, Guder P, Santer R, Honzík T, Hoffmann GF, Garbade SF, Sivri HS, Leuzzi V, Jeltsch K, García-Cazorla A, Opladen T; International Working Group on Neurotransmitter Related Disorders (iNTD), Harting I.

J Inherit Metab Dis. 2021 Jan 14. doi: 10.1002/jimd.12360. Online ahead of print. ABSTRACT Inherited monoamine neurotransmitter disorders (iMNDs) are rare disorders with clinical manifestations ranging from mild infantile hypotonia, movement disorders to early infantile severe encephalopathy. Neuroimaging has been reported as non-specific. We systematically analyzed brain MRIs in order to characterize and better understand neuroimaging changes and to re-evaluate the diagnostic role of brain MRI in iMNDs. 81 MRIs of 70 patients (0.1-52.9 years, 39 patients with tetrahydrobiopterin deficiencies, 31 with primary disorders of monoamine metabolism) were retrospectively analyzed and clinical records reviewed. 33/70 patients had MRI changes, most commonly atrophy (n = 24). Eight patients, six with dihydropteridine reductase deficiency (DHPR), had a common pattern of bilateral parieto-occipital and to a lesser extent frontal and/or cerebellar changes in arterial watershed zones. Two patients imaged after acute severe encephalopathy had signs of profound hypoxic-ischemic injury and a combination of deep gray matter and watershed injury (aromatic l-amino acid decarboxylase (AADCD), tyrosine hydroxylase deficiency (THD)). Four patients had myelination delay (AADCD; THD); two had changes characteristic of post-infantile onset neuronal disease (AADCD, monoamine oxidase A deficiency), and nine T2-hyperintensity of central tegmental tracts. iMNDs are associated with MRI patterns consistent with chronic effects of a neuronal disorder and signs of repetitive injury to cerebral and cerebellar watershed areas, in particular in DHPRD. These will be helpful in the (neuroradiological) differential diagnosis of children with unknown disorders and monitoring of iMNDs. We hypothesize that deficiency of catecholamines and/or tetrahydrobiopterin increase the incidence of and the CNS susceptibility to vascular dysfunction. PMID:33443316 | DOI:10.1002/jimd.12360

January 14, 2021
Genetic Neurologic Disease

Expanding the phenotype of PIGS-associated early onset epileptic developmental encephalopathy

Efthymiou S, Dutra-Clarke M, Maroofian R, Kaiyrzhanov R, Scala M, Reza Alvi J, Sultan T, Christoforou M, Tuyet Mai Nguyen T, Mankad K, Vona B, Rad A, Striano P, Salpietro V, Guillen Sacoto MJ, Zaki MS, Gleeson JG, Campeau PM, Russell BE, Houlden H.

Epilepsia. 2021 Feb;62(2):e35-e41. doi: 10.1111/epi.16801. Epub 2021 Jan 7. ABSTRACT The phosphatidylinositol glycan anchor biosynthesis class S protein (PIGS) gene has recently been implicated in a novel congenital disorder of glycosylation resulting in autosomal recessive inherited glycosylphosphatidylinositol-anchored protein (GPI-AP) deficiency. Previous studies described seven patients with biallelic variants in the PIGS gene, of whom two presented with fetal akinesia and five with global developmental delay and epileptic developmental encephalopathy. We present the molecular and clinical characteristics of six additional individuals from five families with unreported variants in PIGS. All individuals presented with hypotonia, severe global developmental delay, microcephaly, intractable early infantile epilepsy, and structural brain abnormalities. Additional findings include vision impairment, hearing loss, renal malformation, and hypotonic facial appearances with minor dysmorphic features but without a distinctive facial gestalt. Four individuals died due to neurologic complications. GPI anchoring studies performed on one individual revealed a significant decrease in GPI-APs. We confirm that biallelic variants in PIGS cause vitamin pyridoxine-responsive epilepsy due to inherited GPI deficiency and expand the genotype and phenotype of PIGS-related disorder. Further delineation of the molecular spectrum of PIGS-related disorders would improve management, help develop treatments, and encourage the expansion of diagnostic genetic testing to include this gene as a potential cause of neurodevelopmental disorders and epilepsy. PMID:33410539 | PMC:PMC7898547 | DOI:10.1111/epi.16801

January 7, 2021
Neurogenomics

Use of Plasma Metagenomic Next-generation Sequencing for Pathogen Identification in Pediatric Endocarditis

To RK, Ramchandar N, Gupta A, Pong A, Cannavino C, Foley J, Farnaes L, Coufal NG. 

Pediatr Infect Dis J. 2020 Dec 30;Publish Ahead of Print. doi: 10.1097/INF.0000000000003038. Online ahead of print. ABSTRACT Pediatric infective endocarditis incurs significant morbidity and generally occurs among children with underlying heart disease. Identification of a pathogen is critical in determining appropriate therapy. However, standard diagnostic testing has limited sensitivity. We describe a case series of children with infective endocarditis in whom plasma next-generation sequencing (Karius, Redwood, CA) identified an organism in 8 of 10 cases. PMID:33410648 | DOI:10.1097/INF.0000000000003038

January 7, 2021

2020

The nucleotide prodrug CERC-913 improves mtDNA content in primary hepatocytes from DGUOK-deficient rats

Vanden Avond MA, Meng H, Beatka MJ, Helbling DC, Prom MJ, Sutton JL, Slick RA, Dimmock DP, Pertusati F, Serpi M, Pileggi E, Crutcher P, Thomas S, Lawlor MW.

J Inherit Metab Dis. 2021 Mar;44(2):492-501. doi: 10.1002/jimd.12354. Epub 2021 Jan 15. ABSTRACT Loss-of-function mutations in the deoxyguanosine kinase (DGUOK) gene result in a mitochondrial DNA (mtDNA) depletion syndrome. DGUOK plays an important role in converting deoxyribonucleosides to deoxyribonucleoside monophosphates via the salvage pathway for mtDNA synthesis. DGUOK deficiency manifests predominantly in the liver; the most common cause of death is liver failure within the first year of life and no therapeutic options are currently available. in vitro supplementation with deoxyguanosine or deoxyguanosine monophosphate (dGMP) were reported to rescue mtDNA depletion in DGUOK-deficient, patient-derived fibroblasts and myoblasts. CERC-913, a novel ProTide prodrug of dGMP, was designed to bypass defective DGUOK while improving permeability and stability relative to nucleoside monophosphates. To evaluate CERC-913 for its ability to rescue mtDNA depletion, we developed a primary hepatocyte culture model using liver tissue from DGUOK-deficient rats. DGUOK knockout rat hepatocyte cultures exhibit severely reduced mtDNA copy number (~10%) relative to wild type by qPCR and mtDNA content remains stable for up to 8 days in culture. CERC-913 increased mtDNA content in DGUOK-deficient hepatocytes up to 2.4-fold after 4 days of treatment in a dose-dependent fashion, which was significantly more effective than dGMP at similar concentrations. These early results suggest primary hepatocyte culture is a useful model for the study of mtDNA depletion syndromes and that CERC-913 treatment can improve mtDNA content in this model. PMID:33368311 | DOI:10.1002/jimd.12354

December 28, 2020

An online compendium of treatable genetic disorders

Bick D, Bick SL, Dimmock DP, Fowler TA, Caulfield MJ, Scott RH.

Am J Med Genet C Semin Med Genet. 2021 Mar;187(1):48-54. doi: 10.1002/ajmg.c.31874. Epub 2020 Dec 22. ABSTRACT More than 4,000 genes have been associated with recognizable Mendelian/monogenic diseases. When faced with a new diagnosis of a rare genetic disorder, health care providers increasingly turn to internet resources for information to understand the disease and direct care. Unfortunately, it can be challenging to find information concerning treatment for rare diseases as key details are scattered across a number of authoritative websites and numerous journal articles. The website and associated mobile device application described in this article begin to address this challenge by providing a convenient, readily available starting point to find treatment information. The site, Rx-genes.com (https://www.rx-genes.com/), is focused on those conditions where the treatment is directed against the mechanism of the disease and thereby alters the natural history of the disease. The website currently contains 633 disease entries that include references to disease information and treatment guidance, a brief summary of treatments, the inheritance pattern, a disease frequency (if known), nonmolecular confirmatory testing (if available), and a link to experimental treatments. Existing entries are continuously updated, and new entries are added as novel treatments appear in the literature. PMID:33350578 | PMC:PMC7986124 | DOI:10.1002/ajmg.c.31874

December 22, 2020

UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism

Li C, Beauregard-Lacroix E, Kondratev C, Rousseau J, Heo AJ, Neas K, Graham BH, Rosenfeld JA, Bacino CA, Wagner M, Wenzel M, Al Mutairi F, Al Deiab H, Gleeson JG, Stanley V, Zaki MS, Kwon YT, Leroux MR, Campeau PM.

Am J Hum Genet. 2021 Jan 7;108(1):134-147. doi: 10.1016/j.ajhg.2020.11.018. Epub 2020 Dec 18. ABSTRACT The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences (“N-end rule”). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones. PMID:33340455 | PMC:PMC7820726 | DOI:10.1016/j.ajhg.2020.11.018

December 19, 2020

De novo variants in SNAP25 cause an early-onset developmental and epileptic encephalopathy

Klöckner C, Sticht H, Zacher P, Popp B, Babcock HE, Bakker DP, Barwick K, Bonfert MV, Bönnemann CG, Brilstra EH; Care4Rare Canada Consortium, Chung WK, Clarke AJ, Devine P, Donkervoort S, Fraser JL, Friedman J, Gates A, Ghoumid J, Hobson E, Horvath G, Keller-Ramey J, Keren B, Kurian MA, Lee V, Leppig KA, Lundgren J, McDonald MT, McLaughlin HM, McTague A, Mefford HC, Mignot C, Mikati MA, Nava C, Raymond FL, Sampson JR, Sanchis-Juan A, Shashi V, Shieh JTC, Shinawi M, Slavotinek A, Stödberg T, Stong N, Sullivan JA, Taylor AC, Toler TL, van den Boogaard MJ, van der Crabben SN, van Gassen KLI, van Jaarsveld RH, Van Ziffle J, Wadley AF, Wagner M, Wigby K, Wortmann SB, Zarate YA, Møller RS, Lemke JR, Platzer K.

Genet Med. 2020 Dec 10. doi: 10.1038/s41436-020-01020-w. Online ahead of print. ABSTRACT PURPOSE: This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed “SNAREopathies.” PMID:33299146 | DOI:10.1038/s41436-020-01020-w

December 10, 2020

Metagenomic sequencing and evaluation of the host response in the pediatric aerodigestive population

Gatcliffe C, Rao A, Brigger M, Dimmock D, Hansen C, Montgomery J, Schlaberg R, Coufal NG, Farnaes L.

Pediatr Pulmonol. 2021 Feb;56(2):516-524. doi: 10.1002/ppul.25198. Epub 2020 Dec 14. ABSTRACT OBJECTIVES: To assess the diagnostic utility of metagenomic sequencing in pediatric aerodigestive clinic patients being evaluated for chronic aspiration. We hypothesize that using a metagenomics platform will aid in the identification of microbes not found on standard culture. STUDY DESIGN AND METHODS: Twenty-four children referred to an aerodigestive clinic were enrolled in a prospective, single-site, cross-sectional cohort study. At the time of clinical evaluation under anesthesia, two samples were obtained: an upper airway sample and a sample from bronchoalveolar lavage (BAL). Samples were sent for routine culture and analyzed using Explify® Respiratory, a CLIA Laboratory Developed Test which identifies respiratory commensals and pathogens through RNA and DNA sequencing. Since RNA was sequenced in the course of the metagenomic analysis to identify organisms (RNA viruses and bacteria), the sequencing approach also captured host derived messenger RNA during sample analysis. This incidentally obtained host transcriptomic data were analyzed to evaluate the host immune response. The results of these studies were correlated with the clinical presentation of the research subjects. RESULTS: In 10 patients, organisms primarily associated with oral flora were identified in the BAL. Standard culture was negative in three patients where clinical metagenomics led to a result with potential clinical significance. Transcriptomic data correlated with the presence or absence of dysphagia as identified on prior videofluoroscopic evaluation of swallowing. CONCLUSIONS: Clinical metagenomics allows for simultaneous analysis of the microbiota and the host immune response from BAL samples. As the technologies in this field continue to advance, such testing may improve the diagnostic evaluation of patients with suspected chronic aspiration. PMID:33270378 | DOI:10.1002/ppul.25198

December 3, 2020

Publications Question?

Contact Us About BeginNGS