Heteromeric clusters of ubiquitinated ER-shaping proteins drive ER-phagy
Foronda H, Fu Y, Covarrubias-Pinto A, Bocker HT, González A, Seemann E, Franzka P, Bock A, Bhaskara RM, Liebmann L, Hoffmann ME, Katona I, Koch N, Weis J, Kurth I, Gleeson JG, Reggiori F, Hummer G, Kessels MM, Qualmann B, Mari M, Dikić I, Hübner CA.
Nature. 2023 May 24. doi: 10.1038/s41586-023-06090-9. Online ahead of print.
ABSTRACT
Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.
PMID:
37225994 DOI:
10.1038/s41586-023-06090-9
May 24, 2023
AMFR dysfunction causes autosomal recessive spastic paraplegia in human that is amenable to statin treatment in a preclinical model
Deng R, Medico-Salsench E, Nikoncuk A, Ramakrishnan R, Lanko K, Kühn NA, van der Linde HC, Lor-Zade S, Albuainain F, Shi Y, Yousefi S, Capo I, van den Herik EM, van Slegtenhorst M, van Minkelen R, Geeven G, Mulder MT, Ruijter GJG, Lütjohann D, Jacobs EH, Houlden H, Pagnamenta AT, Metcalfe K, Jackson A, Banka S, De Simone L, Schwaede A, Kuntz N, Palculict TB, Abbas S, Umair M, AlMuhaizea M, Colak D, AlQudairy H, Alsagob M, Pereira C, Trunzo R, Karageorgou V, Bertoli-Avella AM, Bauer P, Bouman A, Hoefsloot LH, van Ham TJ, Issa M, Zaki MS, Gleeson JG, Willemsen R, Kaya N, Arold ST, Maroofian R, Sanderson LE, Barakat TS.
Acta Neuropathol. 2023 Apr 29. doi: 10.1007/s00401-023-02579-9. Online ahead of print.
ABSTRACT
Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.
PMID:
37119330 DOI:
10.1007/s00401-023-02579-9
April 29, 2023
Neurogenomics
The genomic landscape of familial glioma
Choi DJ, Armstrong G, Lozzi B, Vijayaraghavan P, Plon SE, Wong TC, Boerwinkle E, Muzny DM, Chen HC, Gibbs RA, Ostrom QT, Melin B, Deneen B, Bondy ML; Gliogene Consortium; Genomics England Research Consortium; Bainbridge MN, Amos CI, Barnholtz-Sloan JS, Bernstein JL, Claus EB, Houlston RS, Il’yasova D, Jenkins RB, Johansen C, Lachance D, Lai R, Melin BS, Merrell RT, Olson SH, Sadetzki S, Schildkraut J, Shete S, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Brown MA, Caulfield MJ, Chan GC, Giess A, Griffin JN, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Lakey A, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Mitchell J, Moutsianas L, Mueller M, Murugaesu N, Need AC, O’Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM, Zarowiecki M.
Sci Adv. 2023 Apr 28;9(17):eade2675. doi: 10.1126/sciadv.ade2675. Epub 2023 Apr 28.
ABSTRACT
Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
PMID:
37115922 DOI:
10.1126/sciadv.ade2675
April 28, 2023
Neuro-Oncology
ARF1-related disorder: phenotypic and molecular spectrum
de Sainte Agathe JM, Pode-Shakked B, Naudion S, Michaud V, Arveiler B, Fergelot P, Delmas J, Keren B, Poirsier C, Alkuraya FS, Tabarki B, Bend E, Davis K, Bebin M, Thompson ML, Bryant EM, Wagner M, Hannibal I, Lenberg J, Krenn M, Wigby KM, Friedman JR, Iascone M, Cereda A, Miao T, LeGuern E, Argilli E, Sherr E, Caluseriu O, Tidwell T, Bayrak-Toydemir P, Hagedorn C, Brugger M, Vill K, Morneau-Jacob FD, Chung W, Weaver KN, Owens JW, Husami A, Chaudhari BP, Stone BS, Burns K, Li R, de Lange IM, Biehler M, Ginglinger E, Gérard B, Stottmann RW, Trimouille A.
J Med Genet. 2023 Apr 25:jmg-2022-108803. doi: 10.1136/jmg-2022-108803. Online ahead of print.
ABSTRACT
PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder.
METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated.
RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder.
CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.
PMID:
37185208 DOI:
10.1136/jmg-2022-108803
April 25, 2023
Genetic Neurologic Disease
3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma
Okonechnikov K, Camgöz A, Chapman O, Wani S, Park DE, Hübner JM, Chakraborty A, Pagadala M, Bump R, Chandran S, Kraft K, Acuna-Hidalgo R, Reid D, Sikkink K, Mauermann M, Juarez EF, Jenseit A, Robinson JT, Pajtler KW, Milde T, Jäger N, Fiesel P, Morgan L, Sridhar S, Coufal NG, Levy M, Malicki D, Hobbs C, Kingsmore S, Nahas S, Snuderl M, Crawford J, Wechsler-Reya RJ, Davidson TB, Cotter J, Michaiel G, Fleischhack G, Mundlos S, Schmitt A, Carter H, Michealraj KA, Kumar SA, Taylor MD, Rich J, Buchholz F, Mesirov JP, Pfister SM, Ay F, Dixon JR, Kool M, Chavez L.
Nat Commun. 2023 Apr 21;14(1):2300. doi: 10.1038/s41467-023-38044-0.
ABSTRACT
Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains (‘neo-TADs’) caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.
PMID:
37085539 DOI:
10.1038/s41467-023-38044-0
April 21, 2023
Neuro-Oncology
Clinical and molecular spectrum of a large Egyptian cohort with ALS2-related disorders of infantile-onset of clinical continuum IAHSP/JPLS
Zaki MS, Sharaf-Eldin WE, Rafat K, Elbendary HM, Kamel M, Elkhateeb N, Noureldeen MM, Abdeltawab MA, Sadek AA, Essawi ML, Lau T, Murphy D, Abdel-Hamid MS, Holuden H, Issa MY, Gleeson JG.
Clin Genet. 2023 Apr 13. doi: 10.1111/cge.14338. Online ahead of print.
ABSTRACT
This study presents 46 patients from 23 unrelated Egyptian families with ALS2-related disorders without evidence of lower motor neuron involvement. Age at onset ranged from 10 months to 2.5 years, featuring progressive upper motor neuron signs. Detailed clinical phenotypes demonstrated inter- and intrafamilial variability. We identified 16 homozygous disease-causing ALS2 variants; sorted as splice-site, missense, frameshift, nonsense and in-frame in eight, seven, four, three, and one families, respectively. Seven of these variants were novel, expanding the mutational spectrum of the ALS2 gene. As expected, clinical severity was positively correlated with disease onset (p = 0.004). This work provides clinical and molecular profiles of a large single ethnic cohort of patients with ALS2 mutations, and suggests that infantile ascending hereditary spastic paralysis (IAHSP) and juvenile primary lateral sclerosis (JPLS) are belonged to one entity with no phenotype-genotype correlation.
PMID:
37055917 DOI:
10.1111/cge.14338
April 13, 2023
Neurogenomics
Rapid Whole Genome Sequencing for Diagnosis of Single Locus Genetic Diseases in Critically Ill Children
Owen MJ, Batalov S, Ellsworth KA, Wright M, Breeding S, Hugh K, Kingsmore SF, Ding Y.
Methods Mol Biol. 2023;2621:217-239. doi: 10.1007/978-1-0716-2950-5_12.
ABSTRACT
Upon admission to intensive care units (ICU), the differential diagnosis of almost all infants with diseases of unclear etiology includes single locus genetic diseases. Rapid whole genome sequencing (rWGS), including sample preparation, short-read sequencing-by-synthesis, informatics pipelining, and semiautomated interpretation, can now identify nucleotide and structural variants associated with most genetic diseases with robust analytic and diagnostic performance in as little as 13.5 h. Early diagnosis of genetic diseases transforms medical and surgical management of infants in ICUs, minimizing both the duration of empiric treatment and the delay to start of specific treatment. Both positive and negative rWGS tests have clinical utility and can improve outcomes. Since first described 10 years ago, rWGS has evolved considerably. Here we describe our current methods for routine diagnostic testing for genetic diseases by rWGS in as little as 18 h.
PMID:
37041447 DOI:
10.1007/978-1-0716-2950-5_12
April 12, 2023
RPM for NICU and PICUrWGS
Isolated Absent Aortic Valves: A Unique Fetal Case With Echocardiographic, Pathologic, and Genetic Correlation
Schuchardt EL, Grossfeld P, Kingsmore S, Ding Y, Vargas LA, Dyar DA, Mendoza A, Dummer KB.
JACC Case Rep. 2023 Feb 22;11:101790. doi: 10.1016/j.jaccas.2023.101790. eCollection 2023 Apr 5.
ABSTRACT
We present a 22-week fetus with isolated absent aortic valve and inverse circular shunt. The pregnancy was interrupted. Here, echocardiography and pathology images demonstrate this rare entity. Whole genome sequencing revealed a potentially disease-causing variant in the APC gene. Whole genome sequencing should be considered in severe and rare fetal diseases. (Level of Difficulty: Advanced.).
PMID:
37077433 DOI:
10.1016/j.jaccas.2023.101790
April 5, 2023
Rare Disease
Transitional Care for Young People with Movement Disorders: Consensus-Based Recommendations from the MDS Task Force on Pediatrics
Pringsheim T, Batla A, Shalash A, Sahu JK, Cosentino C, Ebrahimi-Fakhari D, Friedman J, Lin JP, Mink J, Munchau A, Munoz D, Nardocci N, Perez-Dueñas B, Sardar Z, Triki C, Ben-Pazi H, Silveira-Moriyama L, Troncoso-Schifferli M, Hoshino K, Dale RC, Fung VSC, Kurian MA, Roze E.
Mov Disord Clin Pract. 2023 Apr 4;10(5):748-755. doi: 10.1002/mdc3.13728. eCollection 2023 May.
ABSTRACT
BACKGROUND: The International Parkinson and Movement Disorders Society (MDS) set up a working group on pediatric movement disorders (MDS Task Force on Pediatrics) to generate recommendations to guide the transition process from pediatrics to adult health care systems in patients with childhood-onset movement disorders.
METHODS: To develop recommendations for transitional care for childhood onset movement disorders, we used a formal consensus development process, using a multi-round, web-based Delphi survey. The Delphi survey was based on the results of the scoping review of the literature and the results of a survey of MDS members on transition practices. Through iterative discussions, we generated the recommendations included in the survey. The MDS Task Force on Pediatrics were the voting members for the Delphi survey. The task force members comprise 23 child and adult neurologists with expertise in the field of movement disorders and from all regions of the world.
RESULTS: Fifteen recommendations divided across four different areas were made pertaining to: (1) team composition and structure, (2) planning and readiness, (3) goals of care, and (4) administration and research. All recommendations achieved consensus with a median score of 7 or greater.
CONCLUSION: Recommendations on providing transitional care for patients with childhood onset movement disorders are provided. Nevertheless several challenges remain in the implementation of these recommendations, related to health infrastructure and the distribution of health resources, and the availability of knowledgeable and interested practitioners. Research on the influence of transitional care programs on outcomes in childhood onset movement disorders is much needed.
PMID:
37205244 PMC:
PMC10186998
April 4, 2023
Genetic Neurologic Disease
Automated prioritization of sick newborns for whole genome sequencing using clinical natural language processing and machine learning
Peterson B, Hernandez EJ, Hobbs C, Malone Jenkins S, Moore B, Rosales E, Zoucha S, Sanford E, Bainbridge MN, Frise E, Oriol A, Brunelli L, Kingsmore SF, Yandell M.
Genome Med. 2023 Mar 16;15(1):18. doi: 10.1186/s13073-023-01166-7.
ABSTRACT
BACKGROUND: Rapidly and efficiently identifying critically ill infants for whole genome sequencing (WGS) is a costly and challenging task currently performed by scarce, highly trained experts and is a major bottleneck for application of WGS in the NICU. There is a dire need for automated means to prioritize patients for WGS.
METHODS: Institutional databases of electronic health records (EHRs) are logical starting points for identifying patients with undiagnosed Mendelian diseases. We have developed automated means to prioritize patients for rapid and whole genome sequencing (rWGS and WGS) directly from clinical notes. Our approach combines a clinical natural language processing (CNLP) workflow with a machine learning-based prioritization tool named Mendelian Phenotype Search Engine (MPSE).
RESULTS: MPSE accurately and robustly identified NICU patients selected for WGS by clinical experts from Rady Children’s Hospital in San Diego (AUC 0.86) and the University of Utah (AUC 0.85). In addition to effectively identifying patients for WGS, MPSE scores also strongly prioritize diagnostic cases over non-diagnostic cases, with projected diagnostic yields exceeding 50% throughout the first and second quartiles of score-ranked patients.
CONCLUSIONS: Our results indicate that an automated pipeline for selecting acutely ill infants in neonatal intensive care units (NICU) for WGS can meet or exceed diagnostic yields obtained through current selection procedures, which require time-consuming manual review of clinical notes and histories by specialized personnel.
PMID:
36927505 DOI:
10.1186/s13073-023-01166-7
March 16, 2023
RPM for NICU and PICUrWGS