ABHD16A deficiency causes a complicated form of hereditary spastic paraplegia associated with intellectual disability and cerebral anomalies
Lemire G, Ito YA, Marshall AE, Chrestian N, Stanley V, Brady L, Tarnopolsky M, Curry CJ, Hartley T, Mears W, Derksen A, Rioux N, Laflamme N, Hutchison HT, Pais LS, Zaki MS, Sultan T, Dane AD; Care4Rare Canada Consortium, Gleeson JG, Vaz FM, Kernohan KD, Bernard G, Boycott KM
Am J Hum Genet. 2021 Sep 21:S0002-9297(21)00341-4. doi: 10.1016/j.ajhg.2021.09.005. Online ahead of print.
ABSTRACT
ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.
PMID:
34587489 | DOI:
10.1016/j.ajhg.2021.09.005
September 30, 2021
Neurogenomics
A Human Pleiotropic Multiorgan Condition Caused by Deficient Wnt Secretion
Chai G, Szenker-Ravi E, Chung C, Li Z, Wang L, Khatoo M, Marshall T, Jiang N, Yang X, McEvoy-Venneri J, Stanley V, Anzenberg P, Lang N, Wazny V, Yu J, Virshup DM, Nygaard R, Mancia F, Merdzanic R, Toralles MBP, Pitanga PML, Puri RD, Hernan R, Chung WK, Bertoli-Avella AM, Al-Sannaa N, Zaki MS, Willert K, Reversade B, Gleeson JG
N Engl J Med. 2021 Sep 30;385(14):1292-1301. doi: 10.1056/NEJMoa2033911.
ABSTRACT
BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach.
METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant “knocked in,” to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring.
RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development.
CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).
PMID:
34587386 | DOI:
10.1056/NEJMoa2033911
September 30, 2021
Neurogenomics
Effect of Whole-Genome Sequencing on the Clinical Management of Acutely Ill Infants With Suspected Genetic Disease: A Randomized Clinical Trial
NICUSeq Study Group, Krantz ID, Medne L, Weatherly JM, Wild KT, Biswas S, Devkota B, Hartman T, Brunelli L, Fishler KP, Abdul-Rahman O, Euteneuer JC, Hoover D, Dimmock D, Cleary J, Farnaes L, Knight J, Schwarz AJ, Vargas-Shiraishi OM, Wigby K, Zadeh N, Shinawi M, Wambach JA, Baldridge D, Cole FS, Wegner DJ, Urraca N, Holtrop S, Mostafavi R, Mroczkowski HJ, Pivnick EK, Ward JC, Talati A, Brown CW, Belmont JW, Ortega JL, Robinson KD, Brocklehurst WT, Perry DL, Ajay SS, Hagelstrom RT, Bennett M, Rajan V, Taft RJ.
JAMA Pediatr. 2021 Sep 27. doi: 10.1001/jamapediatrics.2021.3496. Online ahead of print.
ABSTRACT
IMPORTANCE: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management.
OBJECTIVE: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US.
DESIGN, SETTING, AND PARTICIPANTS: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children’s hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020.
INTERVENTIONS: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study.
MAIN OUTCOMES AND MEASURES: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality.
RESULTS: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed.
CONCLUSIONS AND RELEVANCE: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population.
TRAIL REGISTRATION: ClinicalTrials.gov Identifier: NCT03290469.
PMID:
34570182 | DOI:
10.1001/jamapediatrics.2021.3496
September 28, 2021
RPM for NICU and PICU
Insights into the expanding phenotypic spectrum of inherited disorders of biogenic amines
Kuseyri Hübschmann O, Horvath G, Cortès-Saladelafont E, Yıldız Y, Mastrangelo M, Pons R, Friedman J, Mercimek-Andrews S, Wong SN, Pearson TS, Zafeiriou DI, Kulhánek J, Kurian MA, López-Laso E, Oppebøen M, Kılavuz S, Wassenberg T, Goez H, Scholl-Bürgi S, Porta F, Honzík T, Santer R, Burlina A, Sivri HS, Leuzzi V, Hoffmann GF, Jeltsch K, Hübschmann D, Garbade SF; iNTD Registry Study Group, García-Cazorla A, Opladen T.
Nat Commun. 2021 Sep 20;12(1):5529. doi: 10.1038/s41467-021-25515-5.
ABSTRACT
Inherited disorders of neurotransmitter metabolism are rare neurodevelopmental diseases presenting with movement disorders and global developmental delay. This study presents the results of the first standardized deep phenotyping approach and describes the clinical and biochemical presentation at disease onset as well as diagnostic approaches of 275 patients from the registry of the International Working Group on Neurotransmitter related Disorders. The results reveal an increased rate of prematurity, a high risk for being small for gestational age and for congenital microcephaly in some disorders. Age at diagnosis and the diagnostic delay are influenced by the diagnostic methods applied and by disease-specific symptoms. The timepoint of investigation was also a significant factor: delay to diagnosis has decreased in recent years, possibly due to novel diagnostic approaches or raised awareness. Although each disorder has a specific biochemical pattern, we observed confounding exceptions to the rule. The data provide comprehensive insights into the phenotypic spectrum of neurotransmitter disorders.
PMID:
34545092 | DOI:
10.1038/s41467-021-25515-5
September 23, 2021
NeurogenomicsRare Disease
Commentary: Galactosemia Diagnosis by Whole Exome Sequencing Later in Life
Friedman J, Lucas-Del-Pozo S, Moreno-Martinez D, Camprodon-Gomez M, Moreno-Martinez D, Hernandez-Vara J, Kurian MA.
September 16, 2021
Rare Disease
Maternal Smoking and Congenital Heart Defects, National Birth Defects Prevention Study, 1997-2011
Bolin EH, Gokun Y, Romitti PA, Tinker SC, Summers AD, Roberson PK, Hobbs CA, Malik S, Botto LD, Nembhard WN
J Pediatr. 2021 Sep 8:S0022-3476(21)00877-5. doi: 10.1016/j.jpeds.2021.09.005. Online ahead of print.
ABSTRACT
OBJECTIVES: To assess associations between maternal smoking and congenital heart defects (CHDs) in offspring.
STUDY DESIGN: We performed a retrospective case-control study using data for cases of CHD (n=8,339) and non-malformed controls (n=11,020) children from all years (1997-2011) of the National Birth Defects Prevention Study. Maternal self-reported smoking one month before through three months after conception was evaluated as a binary (none, any) and categorical (light, medium, heavy) exposure. Multivariable logistic regression was used to estimate adjusted odds ratios (aOR) and 95% confidence intervals. Stratified analyses were performed for septal defects according to maternal age, pre-pregnancy body mass index, and maternal race/ethnicity.
RESULTS: Multiple CHDs displayed modest associations with any level of maternal periconceptional smoking independent of potential confounders; the strongest associations were for aggregated septal defects (OR 1.5 [1.3-1.7]), tricuspid atresia (OR 1.7 [1.0-2.7]), and double outlet right ventricle (DORV) (1.5 [1.1-2.1]). TA and DORV also displayed dose-response relationships. Among heavy smokers, the highest odds were again observed for TA (aOR 3.0 [1.5-6.1]) and DORV (aOR 1.5 [1.1-2.2]). Heavy smokers ≥35 years old more frequently had a child with a septal defect when compared with similarly aged non-smokers (aOR 2.3 [1.4-3.9]).
CONCLUSIONS: Maternal periconceptional smoking is most strongly associated with septal defects, TA and DORV; the risk for septal defects is modified by maternal age.
PMID:
34508749 | DOI:
10.1016/j.jpeds.2021.09.005
September 16, 2021
Rare Disease
Perspectives of Pediatric Providers Regarding Clinical Use of Pharmacogenetics
Avello K, Bell M, Stein Q, Bares V, Landsverk M, Salyakina D, McCafferty-Fernandez J, Kingsmore S, Bedrick A, Bhojwani D, Hoyme HE.
S D Med. 2021 Jul;74(7):294-301.
ABSTRACT
INTRODUCTION: A major goal of the current personalized medicine era is to utilize pharmacogenetics (PGx) in order to influence how medications and therapies are prescribed by providers. However, disparities for prescribing medications between adults and children exist. Research has shown that children are not just small adults and there are different challenges for pediatric providers in regards to ordering and interpreting PGx tests. The goal of this study was to obtain an initial understanding of current pharmacogenetic testing by pediatric providers, as well as determine perceived barriers.
METHODS: We distributed an online survey to pediatric providers at six different institutions across the U.S.
RESULTS: Of the 252 respondents who completed the survey, 24 percent reported previously ordering PGx tests, however, over 90 percent of respondents reported they would feel more comfortable ordering and interpreting results with the assistance of a pharmacist, geneticist, genetic counselor or PGx expert. Additionally, participants identified specific barriers towards the utilization of PGx testing, as well as suggested solutions to overcome these barriers, including increasing provider education regarding testing, collaboration through a multidisciplinary team approach and established PGx programs.
CONCLUSION: As the pharmacogenetic field continues to demonstrate clinical utility in the pediatric population, it will be important to continuously identify and address barriers that exist for providers to allow for more successful implementation of PGx in the pediatric setting, as well as enhance patient care.
PMID:
34449988
August 31, 2021
RPM for NICU and PICU
Integrative genetic, genomic and transcriptomic analysis of heat shock protein and nuclear hormone receptor gene associations with spontaneous preterm birth
Huusko JM, Tiensuu H, Haapalainen AM, Pasanen A, Tissarinen P, Karjalainen MK, Zhang G, Christensen K, Ryckman KK, Jacobsson B, Murray JC, Kingsmore SF, Hallman M, Muglia LJ, Rämet M.
Sci Rep. 2021 Aug 24;11(1):17115. doi: 10.1038/s41598-021-96374-9.
ABSTRACT
Heat shock proteins are involved in the response to stress including activation of the immune response. Elevated circulating heat shock proteins are associated with spontaneous preterm birth (SPTB). Intracellular heat shock proteins act as multifunctional molecular chaperones that regulate activity of nuclear hormone receptors. Since SPTB has a significant genetic predisposition, our objective was to identify genetic and transcriptomic evidence of heat shock proteins and nuclear hormone receptors that may affect risk for SPTB. We investigated all 97 genes encoding members of the heat shock protein families and all 49 genes encoding nuclear hormone receptors for their potential role in SPTB susceptibility. We used multiple genetic and genomic datasets including genome-wide association studies (GWASs), whole-exome sequencing (WES), and placental transcriptomics to identify SPTB predisposing factors from the mother, infant, and placenta. There were multiple associations of heat shock protein and nuclear hormone receptor genes with SPTB. Several orthogonal datasets supported roles for SEC63, HSPA1L, SACS, RORA, and AR in susceptibility to SPTB. We propose that suppression of specific heat shock proteins promotes maintenance of pregnancy, whereas activation of specific heat shock protein mediated signaling may disturb maternal-fetal tolerance and promote labor.
PMID:
34429451 | DOI:
10.1038/s41598-021-96374-9
August 26, 2021
Gene Discovery
Detecting methylation quantitative trait loci using a methylation random field method
Lyu C, Huang M, Liu N, Chen Z, Lupo PJ, Tycko B, Witte JS, Hobbs CA, Li M.
Brief Bioinform. 2021 Aug 19:bbab323. doi: 10.1093/bib/bbab323. Online ahead of print.
ABSTRACT
DNA methylation may be regulated by genetic variants within a genomic region, referred to as methylation quantitative trait loci (mQTLs). The changes of methylation levels can further lead to alterations of gene expression, and influence the risk of various complex human diseases. Detecting mQTLs may provide insights into the underlying mechanism of how genotypic variations may influence the disease risk. In this article, we propose a methylation random field (MRF) method to detect mQTLs by testing the association between the methylation level of a CpG site and a set of genetic variants within a genomic region. The proposed MRF has two major advantages over existing approaches. First, it uses a beta distribution to characterize the bimodal and interval properties of the methylation trait at a CpG site. Second, it considers multiple common and rare genetic variants within a genomic region to identify mQTLs. Through simulations, we demonstrated that the MRF had improved power over other existing methods in detecting rare variants of relatively large effect, especially when the sample size is small. We further applied our method to a study of congenital heart defects with 83 cardiac tissue samples and identified two mQTL regions, MRPS10 and PSORS1C1, which were colocalized with expression QTL in cardiac tissue. In conclusion, the proposed MRF is a useful tool to identify novel mQTLs, especially for studies with limited sample sizes.
PMID:
34414410 | DOI:
10.1093/bib/bbab323
August 24, 2021
Gene Discovery
To Be or No B2: A Rare Cause of Stridor and Weakness in a Toddler
Aliya L. Frederick, MD, PhD, Jennifer H. Yang, MD, Sarah Schneider, MD, Alexis Quade, MD, Lucia Guidugli, PhD, CGMBS, Kristen Wigby, MD, Melissa Cameron, MD
Child Neurol Open. 2021 Aug 5;8:2329048X211030723. doi: 10.1177/2329048X211030723. eCollection 2021 Jan-Dec.
ABSTRACT
We present a case of a young child with a rare metabolic disorder whose clinical presentation resembled that of autoimmune myasthenia gravis. The differential diagnosis was expanded when autoantibody testing was negative and the patient did not respond to standard immunomodulatory therapies. Rapid whole genome sequencing identified 2 rare variants of uncertain significance in the SLC52A3 gene shown to be in compound heterozygous state after parental testing. Biallelic mutations in SLC52A3 are associated with Riboflavin Transporter Deficiency, which in its untreated form, results in progressive neurodegeneration and death. Supplementation with oral riboflavin has been shown to limit disease progression and improve symptoms in some patients. When the diagnosis is suspected, patients should be started on supplementation immediately while awaiting results from genetic studies.
PMID:
34395718 | PMC:
PMC8361551 | DOI:
10.1177/2329048X211030723
August 17, 2021
Rare Disease