Rare Disease

Advancing Understanding
of Rare Disease

Annually, up to 10 percent of the nearly 4 million babies born in the US are hospitalized in an intensive care unit due to an underlying rare genetic disease. Without proper diagnosis and treatment, some such disorders can lead to permanent disability or even death.

Many rare genetic diseases are never seen by most physicians, as they affect very few children worldwide. This creates challenges in recognizing the condition and knowing how to treat it.

At RCIGM, we want to provide accurate information when a rare disorder is diagnosed to enable families and their healthcare teams to make informed decisions about treatment. 

Knowledge Generation

  • We identify new diseases.
  • We study the normal disease progression of the rare diseases we diagnose.
  • We evaluate treatments for rare disease, including trying medicines not previously used in children, and participating in research with drug companies to evaluate the efficacy of potential new therapies.

   Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Sed hendrerit sed arcu a tincidunt. Phasellus pharetra nisi sed risus pulvinar, vulputate molestie.”

— Lorem Ipsum

Caption Lorem Ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed hendrerit sed arcu a tincidunt. Phasellus pharetra nisi sed risus pulvinar, vulputate molestie nulla vestibulum. Vestibulum vel ex blandit, ultricies libero sit amet, pellentesque odio. Fusce lobortis pharetra nisl non

Key Facts

  • Lorem ipsum dolor sit amet, consect adipiscing elit. 
  • Sed tristique ligula accumsan, elum nunc et, viverra neque.
  • Cras pellentesque velit at nisi gravida, ac blandit libero pulvi.

Publications

Ther Adv Rare Dis. 2024 Jul 31;5:26330040241263972. doi: 10.1177/26330040241263972. eCollection 2024 Jan-Dec.

ABSTRACT

TESS Research Foundation (TESS) is a patient-led nonprofit organization seeking to understand the basic biology and clinical impact of pathogenic variants in the SLC13A5 gene. TESS aims to improve the fundamental understanding of citrate’s role in the brain, and ultimately identify treatments and cures for the associated disease. TESS identifies, organizes, and develops collaboration between researchers, patients, clinicians, and the pharmaceutical industry to improve the lives of those suffering from SLC13A5 citrate transport disorder. TESS and its partners have developed multiple molecular tools, cellular and animal models, and taken the first steps toward drug discovery and development for this disease. However, much remains to be done to improve our understanding of the disorder associated with SLC13A5 variants and identify effective treatments for this devastating disease. Here, we describe the available SLC13A5 resources from the community of experts, to foundational tools, to in vivo and in vitro tools, and discuss unanswered research questions needed to move closer to a cure.

PMID:39091896 | PMC:PMC11292725 | DOI:10.1177/26330040241263972

J Pediatr. 2024 Jul 4:114180. doi: 10.1016/j.jpeds.2024.114180. Online ahead of print.

ABSTRACT

To evaluate a novel candidate disease gene, we engaged international collaborators and identified rare, biallelic, specifically homozygous, loss of function variants in SENP7 in four children from three unrelated families presenting with neurodevelopmental abnormalities, dysmorphism, and immunodeficiency. Their clinical presentations were characterized by hypogammaglobulinemia, intermittent neutropenia, and ultimately death in infancy for all four patients. SENP7 is a sentrin-specific protease involved in posttranslational modification of proteins essential for cell regulation, via a process referred to as deSUMOylation. We propose that deficiency of deSUMOylation may represent a novel mechanism of primary immunodeficiency.

PMID:38972567 | DOI:10.1016/j.jpeds.2024.114180

N Engl J Med. 2024 Jun 6;390(21):1985-1997. doi: 10.1056/NEJMoa2314761.

ABSTRACT

BACKGROUND: Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined.

METHODS: We sequenced and analyzed the genomes of families with diverse phenotypes who were suspected to have a rare monogenic disease and for whom genetic testing had not revealed a diagnosis, as well as the genomes of a replication cohort at an independent clinical center.

RESULTS: We sequenced the genomes of 822 families (744 in the initial cohort and 78 in the replication cohort) and made a molecular diagnosis in 218 of 744 families (29.3%). Of the 218 families, 61 (28.0%) – 8.2% of families in the initial cohort – had variants that required genome sequencing for identification, including coding variants, intronic variants, small structural variants, copy-neutral inversions, complex rearrangements, and tandem repeat expansions. Most families in which a molecular diagnosis was made after previous nondiagnostic exome sequencing (63.5%) had variants that could be detected by reanalysis of the exome-sequence data (53.4%) or by additional analytic methods, such as copy-number variant calling, to exome-sequence data (10.8%). We obtained similar results in the replication cohort: in 33% of the families in which a molecular diagnosis was made, or 8% of the cohort, genome sequencing was required, which showed the applicability of these findings to both research and clinical environments.

CONCLUSIONS: The diagnostic yield of genome sequencing in a large, diverse research cohort and in a small clinical cohort of persons who had previously undergone genetic testing was approximately 8% and included several types of pathogenic variation that had not previously been detected by means of exome sequencing or other techniques. (Funded by the National Human Genome Research Institute and others.).

PMID:38838312 | DOI:10.1056/NEJMoa2314761

NPJ Genom Med. 2024 Feb 26;9(1):15. doi: 10.1038/s41525-024-00396-x.

ABSTRACT

Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.

PMID:38409289 | DOI:10.1038/s41525-024-00396-x

bioRxiv [Preprint]. 2024 Feb 16:2024.02.13.580158. doi: 10.1101/2024.02.13.580158.

ABSTRACT

Genomics for rare disease diagnosis has advanced at a rapid pace due to our ability to perform “N-of-1” analyses on individual patients. The increasing sizes of ultra-rare, “N-of-1” disease cohorts internationally newly enables cohort-wide analyses for new discoveries, but well-calibrated statistical genetics approaches for jointly analyzing these patients are still under development. The Undiagnosed Diseases Network (UDN) brings multiple clinical, research and experimental centers under the same umbrella across the United States to facilitate and scale N-of-1 analyses. Here, we present the first joint analysis of whole genome sequencing data of UDN patients across the network. We apply existing and introduce new, well-calibrated statistical methods for prioritizing disease genes with de novo recurrence and compound heterozygosity. We also detect pathways enriched with candidate and known diagnostic genes. Our computational analysis, coupled with a systematic clinical review, recapitulated known diagnoses and revealed new disease associations. We make our gene-level findings and variant-level information across the cohort available in a public-facing browser (https://dbmi-bgm.github.io/udn-browser/). These results show that N-of-1 efforts should be supplemented by a joint genomic analysis across cohorts.

PMID:38405764 | PMC:PMC10888768 | DOI:10.1101/2024.02.13.580158

Knowledge Generation

In Line Title

Left Image Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas posuere turpis risus, vel ornare diam ullamcorper eu. Morbi hendrerit id ligula pretium egestas. Maecenas posuere turpis risus, vel ornare.

In Line Title

Left Image Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas posuere turpis risus, vel ornare diam ullamcorper eu. Morbi hendrerit id ligula pretium egestas. Maecenas posuere turpis risus, vel ornare.

Sponsors / Logos Lorem Ipsum

Right Image Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas posuere turpis risus, vel ornare diam ullamcorper eu. Morbi hendrerit id ligula pretium egestas. Fusce eros nulla, porta et nunc et, congue.

Right Image Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas posuere turpis risus, vel ornare diam ullamcorper eu. Morbi hendrerit id ligula pretium egestas. Fusce eros nulla, porta et nunc et, congue.

Read more about this groundbreaking work.

Robert Wechler-Reva

PHD, Neuro-Oncology Program Director

Noted scientist Robert Wechsler-Reya, PhD, is also a professor and researcher at the Sanford Burnham Prebys Medical Discovery Institute (SBP) where he is focused on investigating the genes and nervous system signaling pathways that contribute to medulloblastoma, the most common malignant brain tumor in children.

News Features

October 22, 2020

Variety.com

Inside Our Child’s Battle With Mitochondrial Disease

“Despite a beautiful pregnancy and delivery with every prenatal screening and precaution taken, Evan was born with mitochondrial disease.” Lindzi Scharf shares a … Read More

October 14, 2020

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent lobortis, est eget hendrerit rutrum ...

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent lobortis, est eget hendrerit rutrum, … Read More

Want to Learn More?

Contact Us About BeginNGS