Scientific Publications

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis blandit elit metus, mattis consectetur eros fermentum id. Cras lorem purus, finibus vel aliquam ac, porta in libero. Cras lorem purus, finibus vel aliquam ac, porta in libero.

  • Results Per Page

16 Results

2021

Brain MR patterns in inherited disorders of monoamine neurotransmitters: An analysis of 70 patients

Kuseyri Hübschmann O, Mohr A, Friedman J, Manti F, Horvath G, Cortès-Saladelafont E, Mercimek-Andrews S, Yildiz Y, Pons R, Kulhánek J, Oppebøen M, Koht JA, Podzamczer-Valls I, Domingo-Jimenez R, Ibáñez S, Alcoverro-Fortuny O, Gómez-Alemany T, de Castro P, Alfonsi C, Zafeiriou DI, López-Laso E, Guder P, Santer R, Honzík T, Hoffmann GF, Garbade SF, Sivri HS, Leuzzi V, Jeltsch K, García-Cazorla A, Opladen T; International Working Group on Neurotransmitter Related Disorders (iNTD), Harting I.

J Inherit Metab Dis. 2021 Jan 14. doi: 10.1002/jimd.12360. Online ahead of print. ABSTRACT Inherited monoamine neurotransmitter disorders (iMNDs) are rare disorders with clinical manifestations ranging from mild infantile hypotonia, movement disorders to early infantile severe encephalopathy. Neuroimaging has been reported as non-specific. We systematically analyzed brain MRIs in order to characterize and better understand neuroimaging changes and to re-evaluate the diagnostic role of brain MRI in iMNDs. 81 MRIs of 70 patients (0.1-52.9 years, 39 patients with tetrahydrobiopterin deficiencies, 31 with primary disorders of monoamine metabolism) were retrospectively analyzed and clinical records reviewed. 33/70 patients had MRI changes, most commonly atrophy (n = 24). Eight patients, six with dihydropteridine reductase deficiency (DHPR), had a common pattern of bilateral parieto-occipital and to a lesser extent frontal and/or cerebellar changes in arterial watershed zones. Two patients imaged after acute severe encephalopathy had signs of profound hypoxic-ischemic injury and a combination of deep gray matter and watershed injury (aromatic l-amino acid decarboxylase (AADCD), tyrosine hydroxylase deficiency (THD)). Four patients had myelination delay (AADCD; THD); two had changes characteristic of post-infantile onset neuronal disease (AADCD, monoamine oxidase A deficiency), and nine T2-hyperintensity of central tegmental tracts. iMNDs are associated with MRI patterns consistent with chronic effects of a neuronal disorder and signs of repetitive injury to cerebral and cerebellar watershed areas, in particular in DHPRD. These will be helpful in the (neuroradiological) differential diagnosis of children with unknown disorders and monitoring of iMNDs. We hypothesize that deficiency of catecholamines and/or tetrahydrobiopterin increase the incidence of and the CNS susceptibility to vascular dysfunction. PMID:33443316 | DOI:10.1002/jimd.12360

January 14, 2021
Genetic Neurologic Disease

2020

Novel Protein Biomarkers of Monoamine Metabolism Defects Correlate with Disease Severity

Tristán-Noguero A, Borràs E, Molero-Luis M, Wassenberg T, Peters T, Verbeek MM, Willemsen M, Opladen T, Jeltsch K, Pons R, Thony B, Horvath G, Yapici Z, Friedman J, Hyland K, Agosta GE, López-Laso E, Artuch R, Sabidó E, García-Cazorla À.

Mov Disord. 2021 Mar;36(3):690-703. doi: 10.1002/mds.28362. Epub 2020 Nov 5. ABSTRACT BACKGROUND: Genetic defects of monoamine neurotransmitters are rare neurological diseases amenable to treatment with variable response. They are major causes of early parkinsonism and other spectrum of movement disorders including dopa-responsive dystonia. OBJECTIVES: The objective of this study was to conduct proteomic studies in cerebrospinal fluid (CSF) samples of patients with monoamine defects to detect biomarkers involved in pathophysiology, clinical phenotypes, and treatment response. METHODS: A total of 90 patients from diverse centers of the International Working Group on Neurotransmitter Related Disorders were included in the study (37 untreated before CSF collection, 48 treated and 5 unknown at the collection time). Clinical and molecular metadata were related to the protein abundances in the CSF. RESULTS: Concentrations of 4 proteins were significantly altered, detected by mass spectrometry, and confirmed by immunoassays. First, decreased levels of apolipoprotein D were found in severe cases of aromatic L-amino acid decarboxylase deficiency. Second, low levels of apolipoprotein H were observed in patients with the severe phenotype of tyrosine hydroxylase deficiency, whereas increased concentrations of oligodendrocyte myelin glycoprotein were found in the same subset of patients with tyrosine hydroxylase deficiency. Third, decreased levels of collagen6A3 were observed in treated patients with tetrahydrobiopterin deficiency. CONCLUSION: This study with the largest cohort of patients with monoamine defects studied so far reports the proteomic characterization of CSF and identifies 4 novel biomarkers that bring new insights into the consequences of early dopaminergic deprivation in the developing brain. They open new possibilities to understand their role in the pathophysiology of these disorders, and they may serve as potential predictors of disease severity and therapies. © 2020 International Parkinson and Movement Disorder Society. PMID:33152132 | DOI:10.1002/mds.28362

November 5, 2020
Genetic Neurologic Disease

Failure to thrive – an overlooked manifestation of KMT2B-related dystonia: a case presentation

Ng A, Galosi S, Salz L, Wong T, Schwager C, Amudhavalli S, Gelineau-Morel R, Chowdhury S; Rady Children’s Institute for Genomic Medicine Investigators, Friedman J.

BMC Neurol. 2020 Jun 16;20(1):246. doi: 10.1186/s12883-020-01798-x. ABSTRACT BACKGROUND: KMT2B-related dystonia is a recently described form of childhood onset dystonia that may improve with deep brain stimulation. Prior reports have focused on neurologic features including prominent bulbar involvement without detailing general health consequences that may result from orolingual dysfunction. We describe a family with novel KMT2B mutation with several members with failure to thrive to highlight this non-neurologic, but consequential impact of mutation in this gene. CASE PRESENTATION: We present a case of a 15-year old female who was admitted and evaluated for failure to thrive. On exam, she had severe speech dysfluency, limited ability to protrude the tongue, and generalized dystonia involving the oromandibular region, right upper and left lower extremity with left foot inversion contracture. The proband and her parents underwent whole genome sequencing. A previously undescribed variant, c.4960 T > C (p.Cys1654Arg), was identified in the KMT2B gene in the proband and mother, and this variant was subsequently confirmed in two maternal cousins, one with failure to thrive. Literature review identified frequent reports of prominent bulbar involvement but failure to thrive is rarely mentioned. CONCLUSION: Failure to thrive is a common pediatric clinical condition that has consequences for growth and development. In the presence of an abnormal neurologic exam, a search for a specific underlying genetic etiology should be pursued. With this case series, we highlight an unusual potentially treatable cause of failure to thrive, reinforce the importance of precise molecular diagnosis for patients with failure to thrive and an abnormal neurologic exam, and underscore the importance of cascade screening of family members. PMID:32546208 | PMC:PMC7296679 | DOI:10.1186/s12883-020-01798-x

June 18, 2020
Genetic Neurologic DiseaseNeurogenomicsRare Disease

Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies

Opladen T, López-Laso E, Cortès-Saladelafont E, Pearson TS, Sivri HS, Yildiz Y, Assmann B, Kurian MA, Leuzzi V, Heales S, Pope S, Porta F, García-Cazorla A, Honzík T, Pons R, Regal L, Goez H, Artuch R, Hoffmann GF, Horvath G, Thöny B, Scholl-Bürgi S, Burlina A, Verbeek MM, Mastrangelo M, Friedman J, Wassenberg T, Jeltsch K, Kulhánek J, Kuseyri Hübschmann O; International Working Group on Neurotransmitter related Disorders (iNTD).

Orphanet J Rare Dis. 2020 May 26;15(1):126. doi: 10.1186/s13023-020-01379-8. ABSTRACT BACKGROUND: Tetrahydrobiopterin (BH4) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world and therefore these guidelines have been developed aiming to harmonize and optimize patient care. Representatives of the International Working Group on Neurotransmitter related Disorders (iNTD) developed the guidelines according to the SIGN (Scottish Intercollegiate Guidelines Network) methodology by evaluating all available evidence for the diagnosis and treatment of BH4 deficiencies. CONCLUSION: Although the total body of evidence in the literature was mainly rated as low or very low, these consensus guidelines will help to harmonize clinical practice and to standardize and improve care for BH4 deficient patients. PMID:32456656 | PMC:PMC7251883 | DOI:10.1186/s13023-020-01379-8

May 28, 2020
Genetic Neurologic DiseaseNeurogenomicsRare Disease

2019

Dystonia-Ataxia with early handwriting deterioration in COQ8A mutation carriers: A case series and literature review

Galosi S, Barca E, Carrozzo R, Schirinzi T, Quinzii CM, Lieto M, Vasco G, Zanni G, Di Nottia M, Galatolo D, Filla A, Bertini E, Santorelli FM, Leuzzi V, Haas R, Hirano M, Friedman J.

Parkinsonism Relat Disord. 2019 Nov;68:8-16. doi: 10.1016/j.parkreldis.2019.09.015. Epub 2019 Sep 28.

ABSTRACT

Cerebellar ataxia is a hallmark of coenzyme Q10 (CoQ10) deficiency associated with COQ8A mutations. We present four patients, one with novel COQ8A pathogenic variants all with early, prominent handwriting impairment, dystonia and only mild ataxia. To better define the phenotypic spectrum and course of COQ8A disease, we review the clinical presentation and evolution in 47 reported cases. Individuals with COQ8A mutation display great clinical variability and unpredictable responses to CoQ10 supplementation. Onset is typically during infancy or childhood with ataxic features associated with developmental delay or regression. When disease onset is later in life, first symptoms can include: incoordination, epilepsy, tremor, and deterioration of writing. The natural history is characterized by a progression to a multisystem brain disease dominated by ataxia, with disease severity inversely correlated with age at onset. Six previously reported cases share with ours, a clinical phenotype characterized by slowly progressive or static writing difficulties, focal dystonia, and speech disorder, with only minimal ataxia. The combination of writing difficulty, dystonia and ataxia is a distinctive constellation that is reminiscent of a previously described clinical entity called Dystonia Ataxia Syndrome (DYTCA) and is an important clinical indicator of COQ8A mutations, even when ataxia is mild or absent.

PMID:31621627 | DOI:10.1016/j.parkreldis.2019.09.015

October 18, 2019
Genetic Neurologic DiseaseNeurogenomics

2018

Paroxysmal motor disorders: expanding phenotypes lead to coalescing genotypes

Zima L, Ceulemans S, Reiner G, Galosi S, Chen D, Sahagian M, Haas RH, Hyland K, Friedman J.

Ann Clin Transl Neurol. 2018 Jul 17;5(8):996-1010. doi: 10.1002/acn3.597. eCollection 2018 Aug.

ABSTRACT

Paroxysmal movement disorders encompass varied motor phenomena. Less recognized features and wide phenotypic and genotypic heterogeneity are impediments to straightforward molecular diagnosis. We describe a family with episodic ataxia type 1, initially mis-characterized as paroxysmal dystonia to illustrate this diagnostic challenge. We summarize clinical features in affected individuals to highlight underappreciated aspects and provide comprehensive phenotypic description of the rare familial KCNA1 mutation. Delayed diagnosis in this family is emblematic of the broader challenge of diagnosing other paroxysmal motor disorders. We summarize genotypic and phenotypic overlap and provide a suggested diagnostic algorithm for approaching patients with these conditions.

PMID:30128325 | PMC:PMC6093839 | DOI:10.1002/acn3.597

August 22, 2018
Genetic Neurologic DiseaseNeurogenomics

Publications Question?

Contact Us About BeginNGS