Focus Area Tag: Neurogenomics

Home / Research / Neurogenomics
  • Results Per Page

77 Results

2021

Expanding the phenotype of PIGS-associated early onset epileptic developmental encephalopathy

Efthymiou S, Dutra-Clarke M, Maroofian R, Kaiyrzhanov R, Scala M, Reza Alvi J, Sultan T, Christoforou M, Tuyet Mai Nguyen T, Mankad K, Vona B, Rad A, Striano P, Salpietro V, Guillen Sacoto MJ, Zaki MS, Gleeson JG, Campeau PM, Russell BE, Houlden H.

Epilepsia. 2021 Feb;62(2):e35-e41. doi: 10.1111/epi.16801. Epub 2021 Jan 7. ABSTRACT The phosphatidylinositol glycan anchor biosynthesis class S protein (PIGS) gene has recently been implicated in a novel congenital disorder of glycosylation resulting in autosomal recessive inherited glycosylphosphatidylinositol-anchored protein (GPI-AP) deficiency. Previous studies described seven patients with biallelic variants in the PIGS gene, of whom two presented with fetal akinesia and five with global developmental delay and epileptic developmental encephalopathy. We present the molecular and clinical characteristics of six additional individuals from five families with unreported variants in PIGS. All individuals presented with hypotonia, severe global developmental delay, microcephaly, intractable early infantile epilepsy, and structural brain abnormalities. Additional findings include vision impairment, hearing loss, renal malformation, and hypotonic facial appearances with minor dysmorphic features but without a distinctive facial gestalt. Four individuals died due to neurologic complications. GPI anchoring studies performed on one individual revealed a significant decrease in GPI-APs. We confirm that biallelic variants in PIGS cause vitamin pyridoxine-responsive epilepsy due to inherited GPI deficiency and expand the genotype and phenotype of PIGS-related disorder. Further delineation of the molecular spectrum of PIGS-related disorders would improve management, help develop treatments, and encourage the expansion of diagnostic genetic testing to include this gene as a potential cause of neurodevelopmental disorders and epilepsy. PMID:33410539 | PMC:PMC7898547 | DOI:10.1111/epi.16801

January 7, 2021
Neurogenomics

2020

Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly

Chai G, Webb A, Li C, Antaki D, Lee S, Breuss MW, Lang N, Stanley V, Anzenberg P, Yang X, Marshall T, Gaffney P, Wierenga KJ, Chung BH, Tsang MH, Pais LS, Lovgren AK, VanNoy GE, Rehm HL, Mirzaa G, Leon E, Diaz J, Neumann A, Kalverda AP, Manfield IW, Parry DA, Logan CV, Johnson CA, Bonthron DT, Valleley EMA, Issa MY, Abdel-Ghafar SF, Abdel-Hamid MS, Jennings P, Zaki MS, Sheridan E, Gleeson JG.

Neuron. 2021 Jan 20;109(2):241-256.e9. doi: 10.1016/j.neuron.2020.10.035. Epub 2020 Nov 20.

ABSTRACT

Autosomal-recessive cerebellar hypoplasia and ataxia constitute a group of heterogeneous brain disorders caused by disruption of several fundamental cellular processes. Here, we identified 10 families showing a neurodegenerative condition involving pontocerebellar hypoplasia with microcephaly (PCHM). Patients harbored biallelic mutations in genes encoding the spliceosome components Peptidyl-Prolyl Isomerase Like-1 (PPIL1) or Pre-RNA Processing-17 (PRP17). Mouse knockouts of either gene were lethal in early embryogenesis, whereas PPIL1 patient mutation knockin mice showed neuron-specific apoptosis. Loss of either protein affected splicing integrity, predominantly affecting short and high GC-content introns and genes involved in brain disorders. PPIL1 and PRP17 form an active isomerase-substrate interaction, but we found that isomerase activity is not critical for function. Thus, we establish disrupted splicing integrity and “major spliceosome-opathies” as a new mechanism underlying PCHM and neurodegeneration and uncover a non-enzymatic function of a spliceosomal proline isomerase.

PMID:33220177 | DOI:10.1016/j.neuron.2020.10.035

November 21, 2020
Neurogenomics

Biallelic variants in HPDL, encoding 4-hydroxyphenylpyruvate dioxygenase-like protein, lead to an infantile neurodegenerative condition

Ghosh SG, Lee S, Fabunan R, Chai G, Zaki MS, Abdel-Salam G, Sultan T, Ben-Omran T, Alvi JR, McEvoy-Venneri J, Stanley V, Patel A, Ross D, Ding J, Jain M, Pan D, Lübbert P, Kammerer B, Wiedemann N, Verhoeven-Duif NM, Jans JJ, Murphy D, Toosi MB, Ashrafzadeh F, Imannezhad S, Karimiani EG, Ibrahim K, Waters ER, Maroofian R, Gleeson JG.

Genet Med. 2021 Mar;23(3):524-533. doi: 10.1038/s41436-020-01010-y. Epub 2020 Nov 14.

ABSTRACT

PURPOSE: Dioxygenases are oxidoreductase enzymes with roles in metabolic pathways necessary for aerobic life. 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), encoded by HPDL, is an orphan paralogue of 4-hydroxyphenylpyruvate dioxygenase (HPD), an iron-dependent dioxygenase involved in tyrosine catabolism. The function and association of HPDL with human diseases remain unknown.

METHODS: We applied exome sequencing in a cohort of over 10,000 individuals with neurodevelopmental diseases. Effects of HPDL loss were investigated in vitro and in vivo, and through mass spectrometry analysis. Evolutionary analysis was performed to investigate the potential functional separation of HPDL from HPD.

RESULTS: We identified biallelic variants in HPDL in eight families displaying recessive inheritance. Knockout mice closely phenocopied humans and showed evidence of apoptosis in multiple cellular lineages within the cerebral cortex. HPDL is a single-exonic gene that likely arose from a retrotransposition event at the base of the tetrapod lineage, and unlike HPD, HPDL is mitochondria-localized. Metabolic profiling of HPDL mutant cells and mice showed no evidence of altered tyrosine metabolites, but rather notable accumulations in other metabolic pathways.

CONCLUSION: The mitochondrial localization, along with its disrupted metabolic profile, suggests HPDL loss in humans links to a unique neurometabolic mitochondrial infantile neurodegenerative condition.

PMID:33188300 | DOI:10.1038/s41436-020-01010-y

November 14, 2020
Neurogenomics

Editorial overview: Neurodevelopment Diseases and Neurogenetics pivot towards mechanisms and therapies

Geschwind DH, Gleeson JG.

Curr Opin Genet Dev. 2020 Dec;65:iii-vii. doi: 10.1016/j.gde.2020.09.001. Epub 2020 Nov 8. NO ABSTRACT PMID:33176916 | DOI:10.1016/j.gde.2020.09.001

November 12, 2020
Neurogenomics

A founder mutation in PEX12 among Egyptian patients in peroxisomal biogenesis disorder

Zaki MS, Issa MY, Thomas MM, Elbendary HM, Rafat K, Al Menabawy NM, Selim LA, Ismail S, Abdel-Salam GM, Gleeson JG. 

Neurol Sci. 2020 Oct 29. doi: 10.1007/s10072-020-04843-2. Online ahead of print. ABSTRACT At least 14 distinctive PEX genes function in the biogenesis of peroxisomes. Biallelic alterations in the peroxisomal biogenesis factor 12 (PEX12) gene lead to Zellweger syndrome spectrum (ZSS) with variable clinical expressivity ranging from early lethality to mildly affected with long-term survival. Herein, we define 20 patients derived from 14 unrelated Egyptian families, 19 of which show a homozygous PEX12 in-frame (c.1047_1049del p.(Gln349del)) deletion. This founder mutation, reported rarely outside of Egypt, was associated with a uniformly severe phenotype. Patients showed developmental delay in early life followed by motor and mental regression, progressive hypotonia, unsteadiness, and lack of speech. Seventeen patients had sparse hair or partial alopecia, a striking feature that was not noted previously in PEX12. Neonatal cholestasis was manifested in 2 siblings. Neurodiagnostics showed consistent cerebellar atrophy and variable white matter demyelination, axonal neuropathy in about half, and cardiomyopathy in 10% of patients. A single patient with a compound heterozygous PEX12 mutation exhibited milder features with late childhood onset with gait disturbance and learning disability. Thus, the PEX12 relatively common founder mutation accounts for the majority of PEX12-related disease in Egypt and delineates a uniform clinical and radiographic phenotype. PMID:33123925 | DOI:10.1007/s10072-020-04843-2

October 30, 2020
Neurogenomics

Insight into developmental mechanisms of global and focal migration disorders of cortical development

Castello MA, Gleeson JG. 

Curr Opin Neurobiol. 2020 Oct 21;66:77-84. doi: 10.1016/j.conb.2020.10.005. Online ahead of print. ABSTRACT Cortical development involves neurogenesis followed by migration, maturation, and myelination of immature neurons. Disruptions in these processes can cause malformations of cortical development (MCD). Radial glia (RG) are the stem cells of the brain, both generating neurons and providing the scaffold upon which immature neurons radially migrate. Germline mutations in genes required for cell migration, or cell-cell contact, often lead to global MCDs. Somatic mutations in RG in genes involved in homeostatic function, like mTOR signaling, often lead to focal MCDs. Two different mutations occurring in the same patient can combine in ways we are just beginning to understand. Our growing knowledge about MCD suggests mTOR inhibitors may have expanded utility in treatment-resistant epilepsy, while imaging techniques can better delineate the type and extent of these lesions. PMID:33099181 | DOI:10.1016/j.conb.2020.10.005

October 25, 2020
Neurogenomics

A relatively common homozygous TRAPPC4 splicing variant is associated with an early-infantile neurodegenerative syndrome

Ghosh SG, Scala M, Beetz C, Helman G, Stanley V, Yang X, Breuss MW, Mazaheri N, Selim L, Hadipour F, Pais L, Stutterd CA, Karageorgou V, Begtrup A, Crunk A, Juusola J, Willaert R, Flore LA, Kennelly K, Spencer C, Brown M, Trapane P, Hurst ACE, Lane Rutledge S, Goodloe DH, McDonald MT, Shashi V, Schoch K; Undiagnosed Diseases Network, Tomoum H, Zaitoun R, Hadipour Z, Galehdari H, Pagnamenta AT, Mojarrad M, Sedaghat A, Dias P, Quintas S, Eslahi A, Shariati G, Bauer P, Simons C, Houlden H, Issa MY, Zaki MS, Maroofian R, Gleeson JG. 

Eur J Hum Genet. 2021 Feb;29(2):271-279. doi: 10.1038/s41431-020-00717-5. Epub 2020 Sep 8. ABSTRACT Trafficking protein particle (TRAPP) complexes, which include the TRAPPC4 protein, regulate membrane trafficking between lipid organelles in a process termed vesicular tethering. TRAPPC4 was recently implicated in a recessive neurodevelopmental condition in four unrelated families due to a shared c.454+3A>G splice variant. Here, we report 23 patients from 17 independent families with an early-infantile-onset neurodegenerative presentation, where we also identified the homozygous variant hg38:11:119020256 A>G (NM_016146.5:c.454+3A>G) in TRAPPC4 through exome or genome sequencing. No other clinically relevant TRAPPC4 variants were identified among any of over 10,000 patients with neurodevelopmental conditions. We found the carrier frequency of TRAPPC4 c.454+3A>G was 2.4-5.4 per 10,000 healthy individuals. Affected individuals with the homozygous TRAPPC4 c.454+3A>G variant showed profound psychomotor delay, developmental regression, early-onset epilepsy, microcephaly and progressive spastic tetraplegia. Based upon RNA sequencing, the variant resulted in partial exon 3 skipping and generation of an aberrant transcript owing to use of a downstream cryptic splice donor site, predicting a premature stop codon and nonsense mediated decay. These data confirm the pathogenicity of the TRAPPC4 c.454+3A>G variant, and refine the clinical presentation of TRAPPC4-related encephalopathy. PMID:32901138 | PMC:PMC7868361 | DOI:10.1038/s41431-020-00717-5

September 9, 2020
Neurogenomics

Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly

Wang L, Li Z, Sievert D, Smith DEC, Mendes MI, Chen DY, Stanley V, Ghosh S, Wang Y, Kara M, Aslanger AD, Rosti RO, Houlden H, Salomons GS, Gleeson JG. 

Nat Commun. 2020 Aug 12;11(1):4038. doi: 10.1038/s41467-020-17454-4. ABSTRACT Asparaginyl-tRNA synthetase1 (NARS1) is a member of the ubiquitously expressed cytoplasmic Class IIa family of tRNA synthetases required for protein translation. Here, we identify biallelic missense and frameshift mutations in NARS1 in seven patients from three unrelated families with microcephaly and neurodevelopmental delay. Patient cells show reduced NARS1 protein, impaired NARS1 activity and impaired global protein synthesis. Cortical brain organoid modeling shows reduced proliferation of radial glial cells (RGCs), leading to smaller organoids characteristic of microcephaly. Single-cell analysis reveals altered constituents of both astrocytic and RGC lineages, suggesting a requirement for NARS1 in RGC proliferation. Our findings demonstrate that NARS1 is required to meet protein synthetic needs and to support RGC proliferation in human brain development. PMID:32788587 | PMC:PMC7424529 | DOI:10.1038/s41467-020-17454-4

August 14, 2020
Neurogenomics

Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair

Hanzlikova H, Prokhorova E, Krejcikova K, Cihlarova Z, Kalasova I, Kubovciak J, Sachova J, Hailstone R, Brazina J, Ghosh S, Cirak S, Gleeson JG, Ahel I, Caldecott KW.

Nat Commun. 2020 Jul 7;11(1):3391. doi: 10.1038/s41467-020-17069-9. ABSTRACT Neurodegeneration is a common hallmark of individuals with hereditary defects in DNA single-strand break repair; a process regulated by poly(ADP-ribose) metabolism. Recently, mutations in the ARH3 (ADPRHL2) hydrolase that removes ADP-ribose from proteins have been associated with neurodegenerative disease. Here, we show that ARH3-mutated patient cells accumulate mono(ADP-ribose) scars on core histones that are a molecular memory of recently repaired DNA single-strand breaks. We demonstrate that the ADP-ribose chromatin scars result in reduced endogenous levels of important chromatin modifications such as H3K9 acetylation, and that ARH3 patient cells exhibit measurable levels of deregulated transcription. Moreover, we show that the mono(ADP-ribose) scars are lost from the chromatin of ARH3-defective cells in the prolonged presence of PARP inhibition, and concomitantly that chromatin acetylation is restored to normal. Collectively, these data indicate that ARH3 can act as an eraser of ADP-ribose chromatin scars at sites of PARP activity during DNA single-strand break repair. PMID:32636369 | PMC:PMC7341855 | DOI:10.1038/s41467-020-17069-9

July 9, 2020
Neurogenomics

Failure to thrive – an overlooked manifestation of KMT2B-related dystonia: a case presentation

Ng A, Galosi S, Salz L, Wong T, Schwager C, Amudhavalli S, Gelineau-Morel R, Chowdhury S; Rady Children’s Institute for Genomic Medicine Investigators, Friedman J.

BMC Neurol. 2020 Jun 16;20(1):246. doi: 10.1186/s12883-020-01798-x. ABSTRACT BACKGROUND: KMT2B-related dystonia is a recently described form of childhood onset dystonia that may improve with deep brain stimulation. Prior reports have focused on neurologic features including prominent bulbar involvement without detailing general health consequences that may result from orolingual dysfunction. We describe a family with novel KMT2B mutation with several members with failure to thrive to highlight this non-neurologic, but consequential impact of mutation in this gene. CASE PRESENTATION: We present a case of a 15-year old female who was admitted and evaluated for failure to thrive. On exam, she had severe speech dysfluency, limited ability to protrude the tongue, and generalized dystonia involving the oromandibular region, right upper and left lower extremity with left foot inversion contracture. The proband and her parents underwent whole genome sequencing. A previously undescribed variant, c.4960 T > C (p.Cys1654Arg), was identified in the KMT2B gene in the proband and mother, and this variant was subsequently confirmed in two maternal cousins, one with failure to thrive. Literature review identified frequent reports of prominent bulbar involvement but failure to thrive is rarely mentioned. CONCLUSION: Failure to thrive is a common pediatric clinical condition that has consequences for growth and development. In the presence of an abnormal neurologic exam, a search for a specific underlying genetic etiology should be pursued. With this case series, we highlight an unusual potentially treatable cause of failure to thrive, reinforce the importance of precise molecular diagnosis for patients with failure to thrive and an abnormal neurologic exam, and underscore the importance of cascade screening of family members. PMID:32546208 | PMC:PMC7296679 | DOI:10.1186/s12883-020-01798-x

June 18, 2020
Genetic Neurologic DiseaseNeurogenomicsRare Disease

Contact Us About BeginNGS