Rapid Precision Medicine

Our research and clinical work is focused on accelerating and optimizing the whole genome sequencing process to offer testing, analysis and interpretation of life-threatening genetic variations for newborns and children enrolled in one of our multi-center clinical studies.

Our primary focus has been on babies and children hospitalized in neonatal, pediatric or cardiovascular intensive care. In other cases, our studies focus on ending the diagnostic odyssey for stable pediatric patients who have been living with a rare disease, the cause of which has not been identified.

Change in Clinical Management to Improve Outcomes

Providing a rapid diagnosis is particularly important in cases where early intervention with a highly specific treatment, can prevent severe disability or death. Historically, testing for genetic disorders has been a lengthy, difficult process that rarely provided actionable data in time to change the patient’s medical management. Both positive (molecular diagnosis) and negative findings from rapid Whole Genome Sequencing™ (rWGS®) can inform optimal treatment of patients and also facilitate accurate, evidence-based discussions with the families of critically ill children in intensive care unit (ICU) settings.

Building the Evidence Base for rWGS

RCIGM research has contributed to multiple clinical trials demonstrating the utility of genome wide sequencing in children in intensive care settings.

The published evidence supporting the clinical utility of rapid Whole Genome Sequencing™ (rWGS®) and rapid whole exome sequencing (rWES) has increased rapidly.

PubMed IDSequence TypeNeonatal & Pediatric ICU Enrollment CriteriaPatientsDiagnosis RateClinical UtilityChange in Outcome
Indicates RCIGM publicationrWGS = rapid WGS | urWGS = ultra-rapid Whole Genome Sequencing | rWES = rapid Whole Exome Sequencing
23035047urWGS NICU infants with suspected genetic disease475%n.d.n.d.
25937001rWGS<4 mo of age; suspected actionable genetic disease3557%31%29%
28973083rWES<100 days of life; Suspected genetic disease6351%37%19%
29449963rWGS<4 mo of age; Suspected genetic disease3241%31%n.d.
29644095rWGSinfants; Suspected genetic disease4243%31%26%
29543227rWESAcutely ill children with suspected genetic diseases4053%30%8%
30049826rWGSChildren; PICU and Cardiovascular ICU2442%13%n.d.
31246743rWGS4 months-18 years; PICU; Suspected genetic diseases3848%39%8%
30847515rWGSSuspected genetic disease19521%13%n.d.
31019026urWGS Infants; Suspected genetic disease743%43%n.d.
31780822rWES<4 mo of age; ICU; hypotonia, seizures, metabolic, multiple congenital anomalies5054%48%n.d.
32411386rWESNICU & PICU; complex13048%23%n.d.
32553838rWES<6 months; ICU; suspected genetic disease4652%52%n.d.
32221475rWESPICU; < 6 years; new metabolic/neurologic disease1050%30%n.d.
32336750rWESInfants; ICU; Genetic consult36827%22%n.d.
32573669urWES NICU and PICU; Genetic counsult10851%44%n.d.
32668698rWESICU infants; Severe or progressive conditions1872%n.d.n.d.
31564432rWGSInfants; disease of unknown etiology; within 96 hours of admission9419%24%10%
rWES9520%20%18%
urWGS2446%63%25%
Baby BearurWGSMediCal Infants; <1 week of admission17843%31%n.d.
Baby ManateeurWGSInpatient children; 90% in ICUs5040%38%n.d.

Timely Dissemination

When we return genetic test results, we make experts available to assist the doctors caring for a child to find the most up to date information on the disorder.

RCIGM Related Publications

Rapid Whole-Genome Sequencing and Clinical Management in the PICU: A Multicenter Cohort, 2016-2023
Rodriguez KM, Vaught J, Salz L, Foley J, Boulil Z, Van Dongen-Trimmer HM, Whalen D, Oluchukwu O, Liu KC, Burton J, Syngal P, Vargas-Shiraishi O, Kingsmore SF, Sanford Kobayashi E, Coufal NG.

Pediatr Crit Care Med. 2024 Apr 26. doi: 10.1097/PCC.0000000000003522. Online ahead of print.

ABSTRACT

OBJECTIVES: Analysis of the clinical utility of rapid whole-genome sequencing (rWGS) outside of the neonatal period is lacking. We describe the use of rWGS in PICU and cardiovascular ICU (CICU) patients across four institutions.

DESIGN: Ambidirectional multisite cohort study.

SETTING: Four tertiary children’s hospitals.

PATIENTS: Children 0-18 years old in the PICU or CICU who underwent rWGS analysis, from May 2016 to June 2023.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: A total of 133 patients underwent clinical, phenotype-driven rWGS analysis, 36 prospectively. A molecular diagnosis was identified in 79 patients (59%). Median (interquartile range [IQR]) age was 6 months (IQR 1.2 mo-4.6 yr). Median time for return of preliminary results was 3 days (IQR 2-4). In 79 patients with a molecular diagnosis, there was a change in ICU management in 19 patients (24%); and some change in clinical management in 63 patients (80%). Nondiagnosis changed management in 5 of 54 patients (9%). The clinical specialty ordering rWGS did not affect diagnostic rate. Factors associated with greater odds ratio (OR [95% CI]; OR [95% CI]) of diagnosis included dysmorphic features (OR 10.9 [95% CI, 1.8-105]) and congenital heart disease (OR 4.2 [95% CI, 1.3-16.8]). Variables associated with greater odds of changes in management included obtaining a genetic diagnosis (OR 16.6 [95% CI, 5.5-62]) and a shorter time to genetic result (OR 0.8 [95% CI, 0.76-0.9]). Surveys of pediatric intensivists indicated that rWGS-enhanced clinical prognostication (p < 0.0001) and contributed to a decision to consult palliative care (p < 0.02).

CONCLUSIONS: In this 2016-2023 multiple-PICU/CICU cohort, we have shown that timely genetic diagnosis is feasible across institutions. Application of rWGS had a 59% (95% CI, 51-67%) rate of diagnostic yield and was associated with changes in critical care management and long-term patient management.

PMID:38668387 | DOI:10.1097/PCC.0000000000003522

Read publication

Rapid genomic sequencing for genetic disease diagnosis and therapy in intensive care units: a review
Kingsmore SF, Nofsinger R, Ellsworth K.

NPJ Genom Med. 2024 Feb 27;9(1):17. doi: 10.1038/s41525-024-00404-0.

ABSTRACT

Single locus (Mendelian) diseases are a leading cause of childhood hospitalization, intensive care unit (ICU) admission, mortality, and healthcare cost. Rapid genome sequencing (RGS), ultra-rapid genome sequencing (URGS), and rapid exome sequencing (RES) are diagnostic tests for genetic diseases for ICU patients. In 44 studies of children in ICUs with diseases of unknown etiology, 37% received a genetic diagnosis, 26% had consequent changes in management, and net healthcare costs were reduced by $14,265 per child tested by URGS, RGS, or RES. URGS outperformed RGS and RES with faster time to diagnosis, and higher rate of diagnosis and clinical utility. Diagnostic and clinical outcomes will improve as methods evolve, costs decrease, and testing is implemented within precision medicine delivery systems attuned to ICU needs. URGS, RGS, and RES are currently performed in <5% of the ~200,000 children likely to benefit annually due to lack of payor coverage, inadequate reimbursement, hospital policies, hospitalist unfamiliarity, under-recognition of possible genetic diseases, and current formatting as tests rather than as a rapid precision medicine delivery system. The gap between actual and optimal outcomes in children in ICUs is currently increasing since expanded use of URGS, RGS, and RES lags growth in those likely to benefit through new therapies. There is sufficient evidence to conclude that URGS, RGS, or RES should be considered in all children with diseases of uncertain etiology at ICU admission. Minimally, diagnostic URGS, RGS, or RES should be ordered early during admissions of critically ill infants and children with suspected genetic diseases.

PMID:38413639 | DOI:10.1038/s41525-024-00404-0

Read publication

Evidence review and considerations for use of first line genome sequencing to diagnose rare genetic disorders
Wigby KM, Brockman D, Costain G, Hale C, Taylor SL, Belmont J, Bick D, Dimmock D, Fernbach S, Greally J, Jobanputra V, Kulkarni S, Spiteri E, Taft RJ.

NPJ Genom Med. 2024 Feb 26;9(1):15. doi: 10.1038/s41525-024-00396-x.

ABSTRACT

Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.

PMID:38409289 | DOI:10.1038/s41525-024-00396-x

Read publication

Multi-center implementation of rapid whole genome sequencing provides additional evidence of its utility in the pediatric inpatient setting
Thompson L, Larson A, Salz L, Veith R, Tsai JP, Jayakar A, Chapman R, Gupta A, Kingsmore SF, Dimmock D, Bedrick A, Galindo MK, Casas K, Mohamed M, Straight L, Khan MA, Salyakina D.

Front Pediatr. 2024 Feb 19;12:1349519. doi: 10.3389/fped.2024.1349519. eCollection 2024.

ABSTRACT

OBJECTIVE: Multi-center implementation of rapid whole genome sequencing with assessment of the clinical utility of rapid whole genome sequencing (rWGS), including positive, negative and uncertain results, in admitted infants with a suspected genetic disease.

STUDY DESIGN: rWGS tests were ordered at eight hospitals between November 2017 and April 2020. Investigators completed a survey of demographic data, Human Phenotype Ontology (HPO) terms, test results and impacts of results on clinical care.

RESULTS: A total of 188 patients, on general hospital floors and intensive care unit (ICU) settings, underwent rWGS testing. Racial and ethnic characteristics of the tested infants were broadly representative of births in the country at large. 35% of infants received a diagnostic result in a median of 6 days. The most common HPO terms for tested infants indicated an abnormality of the nervous system, followed by the cardiovascular system, the digestive system, the respiratory system and the head and neck. Providers indicated a major change in clinical management because of rWGS for 32% of infants tested overall and 70% of those with a diagnostic result. Also, 7% of infants with a negative rWGS result and 23% with a variant of unknown significance (VUS) had a major change in management due to testing.

CONCLUSIONS: Our study demonstrates that the implementation of rWGS is feasible across diverse institutions, and provides additional evidence to support the clinical utility of rWGS in a demographically representative sample of admitted infants and includes assessment of the clinical impact of uncertain rWGS results in addition to both positive and negative results.

PMID:38440187 | PMC:PMC10909823 | DOI:10.3389/fped.2024.1349519

Read publication

Genome sequencing detects a wide range of clinically relevant copy number variants and other genomic alterations
James KN, Chowdhury S, Ding Y, Batalov S, Watkins K, Kwon YH, Van Der Kraan L, Ellsworth K, Kingsmore SF, Guidugli L. 

Genet Med. 2023 Oct 20:101006. doi: 10.1016/j.gim.2023.101006. Online ahead of print.

ABSTRACT

PURPOSE: Copy number variants (CNVs) and other non-SNV/indel variant types contribute an important proportion of diagnoses in individuals with suspected genetic disease. This study describes the range of such variants detected by genome sequencing (GS).

METHODS: For a pediatric cohort of 1032 participants undergoing clinical GS, we characterize the CNVs and other non-SNV/indel variant types that were reported, including aneuploidies, mobile element insertions, and uniparental disomies, and we describe the bioinformatic pipeline used to detect these variants.

RESULTS: Together, these genetic alterations accounted for 15.8% of reported variants. Notably, 67.9% of these were deletions, 32.9% of which overlapped a single gene, and many deletions were reported together with a second variant in the same gene in cases of recessive disease. A retrospective medical record review in a subset of this cohort revealed that up to six additional genetic tests were ordered in 68% (26/38) of cases, some of which failed to report the CNVs/rare variants reported on GS.

CONCLUSION: GS detected a broad range of reported variant types, including CNVs ranging in size from 1 Kb to 46 Mb.

PMID:37869996 DOI:10.1016/j.gim.2023.101006

Read publication

Rapid Whole-Genomic Sequencing and a Targeted Neonatal Gene Panel in Infants With a Suspected Genetic Disorder
Maron JL, Kingsmore S, Gelb BD, Vockley J, Wigby K, Bragg J, Stroustrup A, Poindexter B, Suhrie K, Kim J, Diacovo T, Powell CM, Trembath A, Guidugli L, Ellsworth KA, Reed D, Kurfiss A, Breeze JL, Trinquart L, Davis JM

JAMA. 2023 Jul 11;330(2):161-169. doi: 10.1001/jama.2023.9350.

ABSTRACT

IMPORTANCE: Genomic testing in infancy guides medical decisions and can improve health outcomes. However, it is unclear whether genomic sequencing or a targeted neonatal gene-sequencing test provides comparable molecular diagnostic yields and times to return of results.

OBJECTIVE: To compare outcomes of genomic sequencing with those of a targeted neonatal gene-sequencing test.

DESIGN, SETTING, AND PARTICIPANTS: The Genomic Medicine for Ill Neonates and Infants (GEMINI) study was a prospective, comparative, multicenter study of 400 hospitalized infants younger than 1 year of age (proband) and their parents, when available, suspected of having a genetic disorder. The study was conducted at 6 US hospitals from June 2019 to November 2021.

EXPOSURE: Enrolled participants underwent simultaneous testing with genomic sequencing and a targeted neonatal gene-sequencing test. Each laboratory performed an independent interpretation of variants guided by knowledge of the patient’s phenotype and returned results to the clinical care team. Change in clinical management, therapies offered, and redirection of care was provided to families based on genetic findings from either platform.

MAIN OUTCOMES AND MEASURES: Primary end points were molecular diagnostic yield (participants with ≥1 pathogenic variant or variant of unknown significance), time to return of results, and clinical utility (changes in patient care).

RESULTS: A molecular diagnostic variant was identified in 51% of participants (n = 204; 297 variants identified with 134 being novel). Molecular diagnostic yield of genomic sequencing was 49% (95% CI, 44%-54%) vs 27% (95% CI, 23%-32%) with the targeted gene-sequencing test. Genomic sequencing did not report 19 variants found by the targeted neonatal gene-sequencing test; the targeted gene-sequencing test did not report 164 variants identified by genomic sequencing as diagnostic. Variants unidentified by the targeted genomic-sequencing test included structural variants longer than 1 kilobase (25.1%) and genes excluded from the test (24.6%) (McNemar odds ratio, 8.6 [95% CI, 5.4-14.7]). Variant interpretation by laboratories differed by 43%. Median time to return of results was 6.1 days for genomic sequencing and 4.2 days for the targeted genomic-sequencing test; for urgent cases (n = 107) the time was 3.3 days for genomic sequencing and 4.0 days for the targeted gene-sequencing test. Changes in clinical care affected 19% of participants, and 76% of clinicians viewed genomic testing as useful or very useful in clinical decision-making, irrespective of a diagnosis.

CONCLUSIONS AND RELEVANCE: The molecular diagnostic yield for genomic sequencing was higher than a targeted neonatal gene-sequencing test, but the time to return of routine results was slower. Interlaboratory variant interpretation contributes to differences in molecular diagnostic yield and may have important consequences for clinical management.

PMID:37432431 DOI:10.1001/jama.2023.9350

Read publication

Rapid Precision Medicine In the News

Want to Learn More?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed hendrerit sed arcu a tincidunt. Phasellus pharetra nisi sed risus pulvinar, vulputate molestie nulla vestibulum. Vestibulum vel ex blandit, ultricies libero sit amet, pellentesque odio. Fusce lobortis pharetra nisl non

Key Facts

  • Lorem ipsum dolor sit amet, consect adipiscing elit. 
  • Sed tristique ligula accumsan, elum nunc et, viverra neque.
  • Cras pellentesque velit at nisi gravida, ac blandit libero pulvi.

Section Seperator

In Line Title

Left Image Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas posuere turpis risus, vel ornare diam ullamcorper eu. Morbi hendrerit id ligula pretium egestas. Maecenas posuere turpis risus, vel ornare.

In Line Title

Left Image Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas posuere turpis risus, vel ornare diam ullamcorper eu. Morbi hendrerit id ligula pretium egestas. Maecenas posuere turpis risus, vel ornare.

Robert Wechler-Reva

PHD, Neuro-Oncology Program Director

Noted scientist Robert Wechsler-Reya, PhD, is also a professor and researcher at the Sanford Burnham Prebys Medical Discovery Institute (SBP) where he is focused on investigating the genes and nervous system signaling pathways that contribute to medulloblastoma, the most common malignant brain tumor in children.

Contact Us About BeginNGS