Neurogenomics

Cracking
the Code

Identifying the cause of neurological disorders and early intervention are key to reducing the devastating brain damage that can occur. 

Neurological disorders can be caused both by inherited and random gene variations. Often, the first sign of a disorder in a newborn is unexplained seizures. 

RCIGM is involved in both foundational and translational research.

Neurodevelopmental Genetics

RCIGM investigations into inherited brain disorders focus on poorly understood conditions in neuronal development where the application of human genetics, wet-lab disease modeling and cell biology can be used to develop new treatments.

Joseph Gleeson, MD

RCIGM Director of Neurodevelopmental Genetics Endowed Chair

Joseph Gleeson, MD, is the RCIGM Director of Neurodevelopmental Genetics Endowed Chair. Among his current research projects is a genetic investigation of the genetic mechanisms underlying spina bifida, the most common structural defect of the central nervous system.

In 2020 Dr. Gleeson along with other researchers at UC San Diego School of Medicine, in collaboration with Rady Children’s Institute for Genomic Medicine, were awarded an $8.3 million grant from the National Institutes of Health’s Eunice Kennedy Shriver National Institute of Child Health and Human Development to further illuminate the causes of spina bifida.

Dr. Gleeson also heads the Neurogenetics Laboratory at UC San Diego and is the Director of the Center for Brain Development. He is the 2020 recipient of the Bernard Sachs Award from the Child Neurology Society. In 2017, he was the first recipient of the Constance Lieber Prize for Innovation in Developmental Neuroscience.

Publications

Genet Med. 2024 Sep 20:101278. doi: 10.1016/j.gim.2024.101278. Online ahead of print.

ABSTRACT

PURPOSE: Biallelic INPP4A variants have recently been associated with severe neurodevelopmental disease in single case reports. Here, we expand and elucidate the clinical-genetic spectrum and provide a pathomechanistic explanation for genotype-phenotype correlations.

METHODS: Clinical and genomic investigations of 30 individuals were undertaken alongside molecular and in silico modelling and translation reinitiation studies.

RESULTS: We characterize a clinically variable disorder with cardinal features including global developmental delay, severe-profound intellectual disability, microcephaly, limb weakness, cerebellar signs and short stature. A more severe presentation associated with biallelic INPP4A variants downstream of exon 4 has additional features of (ponto)cerebellar hypoplasia, reduced cerebral volume, peripheral spasticity, contractures, intractable seizures and cortical visual impairment. Our studies identify the likely pathomechanism of this genotype-phenotype correlation entailing translational reinitiation in exon 4 resulting in an N-terminal truncated INPP4A protein retaining partial functionality, associated with less severe disease. We also identified identical reinitiation site conservation in Inpp4a-/- mouse models displaying similar genotype-phenotype correlation. Additionally, we show fibroblasts from a single affected individual exhibit disrupted endocytic trafficking pathways, indicating the potential biological basis of the condition.

CONCLUSION: Our studies comprehensively characterise INPP4A-related neurodevelopmental disorder and suggest genotype-specific clinical assessment guidelines. We propose the potential mechanistic basis of observed genotype-phenotype correlations entails exon 4 translation reinitiation.

PMID:39315527 | DOI:10.1016/j.gim.2024.101278

Nat Commun. 2024 Aug 22;15(1):7239. doi: 10.1038/s41467-024-51310-z.

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

PMID:39174524 | DOI:10.1038/s41467-024-51310-z

Mov Disord. 2024 Aug 9. doi: 10.1002/mds.29905. Online ahead of print.

ABSTRACT

Acute presentation of severe motor disorders is a diagnostic and management challenge. We define severe acute motor exacerbations (SAME) as acute/subacute motor symptoms that persist for hours-to-days with a severity that compromise vital signs (temperature, breath, and heart rate) and bulbar function (swallowing/dysphagia). Phenomenology includes dystonia, choreoathetosis, combined movement disorders, weakness, and hemiplegic attacks. SAME can develop in diverse diseases and can be preceded by triggers or catabolic states. Recent descriptions of SAME in complex neurodevelopmental and epileptic encephalopathies have broadened appreciation of this presentation beyond inborn errors of metabolism. A high degree of clinical suspicion is required to identify appropriately targeted investigations and management. We conducted a comprehensive literature analysis of etiologies. Reported triggers are described and classified as per pathophysiological mechanism. A video of six cases displaying multiple SAME with diverse outcomes is provided. We identified 50 different conditions that manifest SAME, some associated with developmental regression. Etiologies include disorders of metabolism: energy substrate, amino acids, complex molecules, vitamins/cofactors, minerals, and neurotransmitters/synaptic vesicle cycling. Non-metabolic neurodegenerative and genetic disorders that present with movement disorders and epilepsy can additionally manifest SAME. A limited number of triggers are grouped here, together with an approach to investigations and general management strategies. Several neurogenetic and neurometabolic disorders manifest SAME. Identifying triggers can help in certain cases narrow the differential diagnosis and guide the expeditious application of targeted therapies to minimize adverse developmental and neurological consequences. This process may inform pathogenesis and eventually improve our understanding of the mechanisms that lead to the development of SAME. © 2024 International Parkinson and Movement Disorder Society.

PMID:39119747 | DOI:10.1002/mds.29905

News

Genetic Neurologic Disease

Neurologic Movement Disorders

RCIGM focuses on translational research in pediatric neurologic movement disorders, particularly those resulting from genetic or metabolic conditions. 

Investigations into genetic underpinnings of neurologic movement disorders is led by Jennifer Friedman, MD. Her work involves sequencing children with unexplained neurologic disease to identify diagnosis and treatment options.

Dr. Friedman’s research is aimed at ending the diagnostic odyssey by bringing diagnoses to patients and families; shortening the therapeutic odyssey by delivering precision neurologic care and identifying novel genes for rare neurologic disorders.

headshot of Dr. Jenni Friedman

Jennifer Friedman, MD

Dr. Jennifer Friedman is the Translational Medicine Director for the Precision Medicine Clinic at Rady Children’s Hospital, where she is also a senior staff neurologist. In addition, she serves as clinical professor in the UC San Diego Departments of Neurosciences and Pediatrics. 

Dr. Friedman is a diplomate of the American Board of Psychiatry and Neurology. She is a member of the American Academy of Neurology, the Movement Disorder Society, the Tourette Syndrome Association, and the Phi Beta Kappa National Honor Society. 

Publications

Genet Med. 2024 Sep 10:101251. doi: 10.1016/j.gim.2024.101251. Online ahead of print.

ABSTRACT

PURPOSE: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear.

METHODS: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis.

RESULTS: Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability (GDD/ID), infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe GDD/ID, absent speech, and autistic features, while seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, in particular in pre-rRNA processing.

CONCLUSION: This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of ‘ribosomopathies’.

PMID:39275948 | DOI:10.1016/j.gim.2024.101251

EBioMedicine. 2024 Aug 26;107:105297. doi: 10.1016/j.ebiom.2024.105297. Online ahead of print.

ABSTRACT

BACKGROUND: NOTCH3 encodes a transmembrane receptor critical for vascular smooth muscle cell function. NOTCH3 variants are the leading cause of hereditary cerebral small vessel disease (SVD). While monoallelic cysteine-involving missense variants in NOTCH3 are well-studied in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), patients with biallelic variants in NOTCH3 are extremely rare and not well characterised.

METHODS: In this study, we present clinical and genetic data from 25 patients with biallelic NOTCH3 variants and conduct a literature review of another 25 cases (50 patients in total). Brain magnetic resonance imaging (MRI) were analysed by expert neuroradiologists to better understand the phenotype associated with biallelic NOTCH3 variants.

FINDINGS: Our systematic analyses verified distinct genotype-phenotype correlations for the two types of biallelic variants in NOTCH3. Biallelic loss-of-function variants (26 patients) lead to a neurodevelopmental disorder characterised by spasticity, childhood-onset stroke, and periatrial white matter volume loss resembling periventricular leukomalacia. Conversely, patients with biallelic cysteine-involving missense variants (24 patients) fall within CADASIL spectrum phenotype with early adulthood onset stroke, dementia, and deep white matter lesions without significant volume loss. White matter lesion volume is comparable between patients with biallelic cysteine-involving missense variants and individuals with CADASIL. Notably, monoallelic carriers of loss-of-function variants are predominantly asymptomatic, with only a few cases reporting nonspecific headaches.

INTERPRETATION: We propose a NOTCH3-SVD classification depending on dosage and variant type. This study not only expands our knowledge of biallelic NOTCH3 variants but also provides valuable insight into the underlying mechanisms of the disease, contributing to a more comprehensive understanding of NOTCH3-related SVD.

FUNDING: The Wellcome Trust, the MRC.

PMID:39191170 | DOI:10.1016/j.ebiom.2024.105297

Nat Med. 2024 Aug 9. doi: 10.1038/s41591-024-03197-y. Online ahead of print.

ABSTRACT

KIF1A-associated neurological disorder (KAND) is a neurodegenerative and often lethal ultrarare disease with a wide phenotypic spectrum associated with largely heterozygous de novo missense variants in KIF1A. Antisense oligonucleotide treatments represent a promising approach for personalized treatments in ultrarare diseases. Here we report the case of one patient with a severe form of KAND characterized by refractory spells of behavioral arrest and carrying a p.Pro305Leu variant in KIF1A, who was treated with intrathecal injections of an allele-specific antisense oligonucleotide specifically designed to degrade the mRNA from the pathogenic allele. The first intrathecal administration was complicated by an epidural cerebrospinal fluid collection, which resolved spontaneously. Otherwise, the antisense oligonucleotide was safe and well tolerated over the 9-month treatment. Most outcome measures, including severity of the spells of behavioral arrest, number of falls and quality of life, improved. There was little change in the 6-min Walk Test distance, but qualitative changes in gait resulting in meaningful reductions in falls and increasing independence were observed. Cognitive performance was stable and did not degenerate over time. Our findings provide preliminary insights on the safety and efficacy of an allele-specific antisense oligonucleotide as a possible treatment for KAND.

PMID:39122967 | DOI:10.1038/s41591-024-03197-y

News

In a study published in the October 2022 issue of BRAIN, researchers from Rady Children’s Institute for Genomic Medicine (RCIGM®) and the University of California San Diego School of Medicine describe their discovery of a new clinical syndrome, Neuro-Ocular DAGLA-related Syndrome (NODRS), in children with termination variants in the diacylglycerol lipase alpha (DAGLA) gene which encodes an enzyme in the brain that is involved in the signaling pathway of the endocannabinoid (eCB) system.

Want to Learn More?

Contact Us About BeginNGS