Focus Area Tag: Neurogenomics

Home / Research / Neurogenomics
  • Results Per Page

77 Results

2023

Clinical and molecular spectrum of a large Egyptian cohort with ALS2-related disorders of infantile-onset of clinical continuum IAHSP/JPLS

Zaki MS, Sharaf-Eldin WE, Rafat K, Elbendary HM, Kamel M, Elkhateeb N, Noureldeen MM, Abdeltawab MA, Sadek AA, Essawi ML, Lau T, Murphy D, Abdel-Hamid MS, Holuden H, Issa MY, Gleeson JG.

Clin Genet. 2023 Apr 13. doi: 10.1111/cge.14338. Online ahead of print. ABSTRACT This study presents 46 patients from 23 unrelated Egyptian families with ALS2-related disorders without evidence of lower motor neuron involvement. Age at onset ranged from 10 months to 2.5 years, featuring progressive upper motor neuron signs. Detailed clinical phenotypes demonstrated inter- and intrafamilial variability. We identified 16 homozygous disease-causing ALS2 variants; sorted as splice-site, missense, frameshift, nonsense and in-frame in eight, seven, four, three, and one families, respectively. Seven of these variants were novel, expanding the mutational spectrum of the ALS2 gene. As expected, clinical severity was positively correlated with disease onset (p = 0.004). This work provides clinical and molecular profiles of a large single ethnic cohort of patients with ALS2 mutations, and suggests that infantile ascending hereditary spastic paralysis (IAHSP) and juvenile primary lateral sclerosis (JPLS) are belonged to one entity with no phenotype-genotype correlation. PMID:37055917 DOI:10.1111/cge.14338

April 13, 2023
Neurogenomics

TMEM161B modulates radial glial scaffolding in neocortical development

Wang L, Heffner C, Vong KL, Barrows C, Ha YJ, Lee S, Lara-Gonzalez P, Jhamb I, Van Der Meer D, Loughnan R, Parker N, Sievert D, Mittal S, Issa MY, Andreassen OA, Dale A, Dobyns WB, Zaki MS, Murray SA, Gleeson JG.

Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2209983120. doi: 10.1073/pnas.2209983120. Epub 2023 Jan 20. ABSTRACT TMEM161B encodes an evolutionarily conserved widely expressed novel 8-pass transmembrane protein of unknown function in human. Here we identify TMEM161B homozygous hypomorphic missense variants in our recessive polymicrogyria (PMG) cohort. Patients carrying TMEM161B mutations exhibit striking neocortical PMG and intellectual disability. Tmem161b knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. We found that TMEM161B modulates actin filopodia, functioning upstream of the Rho-GTPase CDC42. Our data link TMEM161B with human PMG, likely regulating radial glia apical polarity during neocortical development. PMID:36669109 DOI:10.1073/pnas.2209983120

January 24, 2023
Neurogenomics

Stem Cell-Based Organoid Models of Neurodevelopmental Disorders

Wang L, Owusu-Hammond C, Sievert D, Gleeson JG.

Biol Psychiatry. 2023 Jan 24:S0006-3223(23)00039-2. doi: 10.1016/j.biopsych.2023.01.012. Online ahead of print. ABSTRACT The past decade has seen an explosion in the identification of genetic causes of neurodevelopmental disorders, including Mendelian, de novo, and somatic factors. These discoveries provide opportunities to understand cellular and molecular mechanisms as well as potential gene-gene and gene-environment interactions to support novel therapies. Stem cell-based models, particularly human brain organoids, can capture disease-associated alleles in the context of the human genome, engineered to mirror disease-relevant aspects of cellular complexity and developmental timing. These models have brought key insights into neurodevelopmental disorders as diverse as microcephaly, autism, and focal epilepsy. However, intrinsic organoid-to-organoid variability, low levels of certain brain-resident cell types, and long culture times required to reach maturity can impede progress. Several recent advances incorporate specific morphogen gradients, mixtures of diverse brain cell types, and organoid engraftment into animal models. Together with nonhuman primate organoid comparisons, mechanisms of human neurodevelopmental disorders are emerging. PMID:36759260 DOI:10.1016/j.biopsych.2023.01.012

January 24, 2023
Neurogenomics

Reversibility and developmental neuropathology of linear nevus sebaceous syndrome caused by dysregulation of the RAS pathway

Kim YE, Kim YS, Lee HE, So KH, Choe Y, Suh BC, Kim JH, Park SK, Mathern GW, Gleeson JG, Rah JC, Baek ST.

Cell Rep. 2023 Jan 14;42(1):112003. doi: 10.1016/j.celrep.2023.112003. Online ahead of print. ABSTRACT Linear nevus sebaceous syndrome (LNSS) is a neurocutaneous disorder caused by somatic gain-of-function mutations in KRAS or HRAS. LNSS brains have neurodevelopmental defects, including cerebral defects and epilepsy; however, its pathological mechanism and potentials for treatment are largely unclear. We show that introduction of KRASG12V in the developing mouse cortex results in subcortical nodular heterotopia and enhanced excitability, recapitulating major pathological manifestations of LNSS. Moreover, we show that decreased firing frequency of inhibitory neurons without KRASG12V expression leads to disrupted excitation and inhibition balance. Transcriptional profiling after destabilization domain-mediated clearance of KRASG12V in human neural progenitors and differentiating neurons identifies reversible functional networks underlying LNSS. Neurons expressing KRASG12V show molecular changes associated with delayed neuronal maturation, most of which are restored by KRASG12V clearance. These findings provide insights into the molecular networks underlying the reversibility of some of the neuropathologies observed in LNSS caused by dysregulation of the RAS pathway. PMID:36641749 DOI:10.1016/j.celrep.2023.112003

January 14, 2023
Neurogenomics

Comprehensive multi-omic profiling of somatic mutations in malformations of cortical development

Chung C, Yang X, Bae T, Vong KI, Mittal S, Donkels C, Westley Phillips H, Li Z, Marsh APL, Breuss MW, Ball LL, Garcia CAB, George RD, Gu J, Xu M, Barrows C, James KN, Stanley V, Nidhiry AS, Khoury S, Howe G, Riley E, Xu X, Copeland B, Wang Y, Kim SH, Kang HC, Schulze-Bonhage A, Haas CA, Urbach H, Prinz M, Limbrick DD Jr, Gurnett CA, Smyth MD, Sattar S, Nespeca M, Gonda DD, Imai K, Takahashi Y, Chen HH, Tsai JW, Conti V, Guerrini R, Devinsky O, Silva WA Jr, Machado HR, Mathern GW, Abyzov A, Baldassari S, Baulac S; Focal Cortical Dysplasia Neurogenetics Consortium; Brain Somatic Mosaicism Network; Gleeson JG.

Nat Genet. 2023 Jan 12. doi: 10.1038/s41588-022-01276-9. Online ahead of print. ABSTRACT Malformations of cortical development (MCD) are neurological conditions involving focal disruptions of cortical architecture and cellular organization that arise during embryogenesis, largely from somatic mosaic mutations, and cause intractable epilepsy. Identifying the genetic causes of MCD has been a challenge, as mutations remain at low allelic fractions in brain tissue resected to treat condition-related epilepsy. Here we report a genetic landscape from 283 brain resections, identifying 69 mutated genes through intensive profiling of somatic mutations, combining whole-exome and targeted-amplicon sequencing with functional validation including in utero electroporation of mice and single-nucleus RNA sequencing. Genotype-phenotype correlation analysis elucidated specific MCD gene sets associated with distinct pathophysiological and clinical phenotypes. The unique single-cell level spatiotemporal expression patterns of mutated genes in control and patient brains indicate critical roles in excitatory neurogenic pools during brain development and in promoting neuronal hyperexcitability after birth. PMID:36635388 DOI:10.1038/s41588-022-01276-9

January 12, 2023
Neurogenomics

Control-independent mosaic single nucleotide variant detection with DeepMosaic

Yang X, Xu X, Breuss MW, Antaki D, Ball LL, Chung C, Shen J, Li C, George RD, Wang Y, Bae T, Cheng Y, Abyzov A, Wei L, Alexandrov LB, Sebat JL; NIMH Brain Somatic Mosaicism Network; Gleeson JG.

Nat Biotechnol. 2023 Jan 2. doi: 10.1038/s41587-022-01559-w. Online ahead of print. ABSTRACT Mosaic variants (MVs) reflect mutagenic processes during embryonic development and environmental exposure, accumulate with aging and underlie diseases such as cancer and autism. The detection of noncancer MVs has been computationally challenging due to the sparse representation of nonclonally expanded MVs. Here we present DeepMosaic, combining an image-based visualization module for single nucleotide MVs and a convolutional neural network-based classification module for control-independent MV detection. DeepMosaic was trained on 180,000 simulated or experimentally assessed MVs, and was benchmarked on 619,740 simulated MVs and 530 independent biologically tested MVs from 16 genomes and 181 exomes. DeepMosaic achieved higher accuracy compared with existing methods on biological data, with a sensitivity of 0.78, specificity of 0.83 and positive predictive value of 0.96 on noncancer whole-genome sequencing data, as well as doubling the validation rate over previous best-practice methods on noncancer whole-exome sequencing data (0.43 versus 0.18). DeepMosaic represents an accurate MV classifier for noncancer samples that can be implemented as an alternative or complement to existing methods. PMID:36593400 DOI:10.1038/s41587-022-01559-w

January 2, 2023
Neurogenomics

2022

Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition

Palmer EE, Pusch M, Picollo A, Forwood C, Nguyen MH, Suckow V, Gibbons J, Hoff A, Sigfrid L, Megarbane A, Nizon M, Cogné B, Beneteau C, Alkuraya FS, Chedrawi A, Hashem MO, Stamberger H, Weckhuysen S, Vanlander A, Ceulemans B, Rajagopalan S, Nunn K, Arpin S, Raynaud M, Motter CS, Ward-Melver C, Janssens K, Meuwissen M, Beysen D, Dikow N, Grimmel M, Haack TB, Clement E, McTague A, Hunt D, Townshend S, Ward M, Richards LJ, Simons C, Costain G, Dupuis L, Mendoza-Londono R, Dudding-Byth T, Boyle J, Saunders C, Fleming E, El Chehadeh S, Spitz MA, Piton A, Gerard B, Abi Warde MT, Rea G, McKenna C, Douzgou S, Banka S, Akman C, Bain JM, Sands TT, Wilson GN, Silvertooth EJ, Miller L, Lederer D, Sachdev R, Macintosh R, Monestier O, Karadurmus D, Collins F, Carter M, Rohena L, Willemsen MH, Ockeloen CW, Pfundt R, Kroft SD, Field M, Laranjeira FER, Fortuna AM, Soares AR, Michaud V, Naudion S, Golla S, Weaver DD, Bird LM, Friedman J, Clowes V, Joss S, Pölsler L, Campeau PM, Blazo M, Bijlsma EK, Rosenfeld JA, Beetz C, Powis Z, McWalter K, Brandt T, Torti E, Mathot M, Mohammad SS, Armstrong R, Kalscheuer VM.

Mol Psychiatry. 2022 Nov 16. doi: 10.1038/s41380-022-01852-9. Online ahead of print. ABSTRACT Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a “shift” of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis. PMID:36385166 DOI:10.1038/s41380-022-01852-9

November 16, 2022
Genetic Neurologic DiseaseNeurogenomics

Evaluating human mutation databases for “treatability” using patient-customized therapy

Mittal S, Tang I, Gleeson JG. Evaluating human mutation databases for “treatability” using patient-customized therapy. Med (N Y).

Med (N Y). 2022 Nov 11;3(11):740-759. doi: 10.1016/j.medj.2022.08.006. ABSTRACT Genome sequencing in the clinic often allows patients to receive a molecular diagnosis. However, variants are most often evaluated for pathogenicity, neglecting potential treatability and thus often yielding limited clinical benefit. Antisense oligonucleotides (ASOs), among others, offer attractive programmable and relatively safe platforms for customized therapy based upon the causative genetic variant. The landscape of ASO-treatable variants is largely uncharted, with new developments emerging for loss-of-function, haploinsufficient, and gain-of-function effects. ASOs can access the transcriptome to target splice-gain variants, poison exons, untranslated/regulatory regions, and naturally occurring antisense transcripts. Here we assess public variant databases and find that approximately half of pathogenic variants have one or more viable avenues for ASO therapy. The future might see medical teams considering “treatability” when interpreting genomic sequencing results to fully realize benefits for patients. PMID:36370694 DOI:10.1016/j.medj.2022.08.006

November 11, 2022
Neurogenomics

Brain monoamine vesicular transport disease caused by homozygous SLC18A2 variants: A study in 42 affected individuals

Saida K, Maroofian R, Sengoku T, Mitani T, Pagnamenta AT, Marafi D, Zaki MS, O’Brien TJ, Karimiani EG, Kaiyrzhanov R, Takizawa M, Ohori S, Leong HY, Akay G, Galehdari H, Zamani M, Romy R, Carroll CJ, Toosi MB, Ashrafzadeh F, Imannezhad S, Malek H, Ahangari N, Tomoum H, Gowda VK, Srinivasan VM, Murphy D, Dominik N, Elbendary HM, Rafat K, Yilmaz S, Kanmaz S, Serin M, Krishnakumar D, Gardham A, Maw A, Rao TS, Alsubhi S, Srour M, Buhas D, Jewett T, Goldberg RE, Shamseldin H, Frengen E, Misceo D, Strømme P, Magliocco Ceroni JR, Kim CA, Yesil G, Sengenc E, Guler S, Hull M, Parnes M, Aktas D, Anlar B, Bayram Y, Pehlivan D, Posey JE, Alavi S, Madani Manshadi SA, Alzaidan H, Al-Owain M, Alabdi L, Abdulwahab F, Sekiguchi F, Hamanaka K, Fujita A, Uchiyama Y, Mizuguchi T, Miyatake S, Miyake N, Elshafie RM, Salayev K, Guliyeva U, Alkuraya FS, Gleeson JG, Monaghan KG, Langley KG, Yang H, Motavaf M, Safari S, Alipour M, Ogata K, Brown AEX, Lupski JR, Houlden H, Matsumoto N.

Genet Med. 2022 Oct 31:S1098-3600(22)00948-0. doi: 10.1016/j.gim.2022.09.010. Online ahead of print. ABSTRACT PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants. METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies. RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities. CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders. PMID:36318270 DOI:10.1016/j.gim.2022.09.010

October 31, 2022
Neurogenomics

Phenotypic continuum of NFU1-related disorders

Kaiyrzhanov R, Zaki MS, Lau T, Sen S, Azizimalamiri R, Zamani M, Sayin GY, Hilander T, Efthymiou S, Chelban V, Brown R, Thompson K, Scarano MI, Ganesh J, Koneev K, Gülaçar IM, Person R, Sadykova D, Maidyrov Y, Seifi T, Zadagali A, Bernard G, Allis K, Elloumi HZ, Lindy A, Taghiabadi E, Verma S, Logan R, Kirmse B, Bai R, Khalaf SM, Abdel-Hamid MS, Sedaghat A, Shariati G, Issa M, Zeighami J, Elbendary HM, Brown G, Taylor RW, Galehdari H, Gleeson JJ, Carroll CJ, Cowan JA, Moreno-De-Luca A, Houlden H, Maroofian R.

Ann Clin Transl Neurol. 2022 Oct 18. doi: 10.1002/acn3.51679. Online ahead of print. ABSTRACT Bi-allelic variants in Iron-Sulfur Cluster Scaffold (NFU1) have previously been associated with multiple mitochondrial dysfunctions syndrome 1 (MMDS1) characterized by early-onset rapidly fatal leukoencephalopathy. We report 19 affected individuals from 10 independent families with ultra-rare bi-allelic NFU1 missense variants associated with a spectrum of early-onset pure to complex hereditary spastic paraplegia (HSP) phenotype with a longer survival (16/19) on one end and neurodevelopmental delay with severe hypotonia (3/19) on the other. Reversible or irreversible neurological decompensation after a febrile illness was common in the cohort, and there were invariable white matter abnormalities on neuroimaging. The study suggests that MMDS1 and HSP could be the two ends of the NFU1-related phenotypic continuum. PMID:36256512 DOI:10.1002/acn3.51679

October 18, 2022
Neurogenomics

Contact Us About BeginNGS