Cell-type-resolved somatic mosaicism reveals clonal dynamics of the human forebrain
Chung C, Yang X, Hevner RF, Kennedy K, Vong KI, Liu Y, Patel A, Nedunuri R, Barton ST, Barrows C, Stanley V, Mittal S, Breuss MW, Schlachetzki JCM, Gleeson JG.
bioRxiv. 2023 Oct 26:2023.10.24.563814. doi: 10.1101/2023.10.24.563814. Preprint.
ABSTRACT
Debate remains around anatomic origins of specific brain cell subtypes and lineage relationships within the human forebrain. Thus, direct observation in the mature human brain is critical for a complete understanding of the structural organization and cellular origins. Here, we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific Mosaic Variant Barcode Analysis. From four hemispheres from two different human neurotypical donors, we identified 287 and 780 mosaic variants (MVs), respectively that were used to deconvolve clonal dynamics. Clonal spread and allelic fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted compared with resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome-transcriptome analysis at both a cell-type-specific and single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1 + inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of MVs across 17 locations within one parietal lobe reveals restrictions of clonal spread in the anterior-posterior axis precedes that of the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus cell-type resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.
PMID:
37961480 | PMC:
PMC10634852 | DOI:
10.1101/2023.10.24.563814
October 15, 2023
Neurogenomics
Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders
Kaiyrzhanov R, Rad A, Lin SJ, Bertoli-Avella A, Kallemeijn WW, Godwin A, Zaki MS, Huang K, Lau T, Petree C, Efthymiou S, Ghayoor Karimiani E, Hempel M, Normand EA, Rudnik-Schöneborn S, Schatz UA, Baggelaar MP, Ilyas M, Sultan T, Alvi JR, Ganieva M, Fowler B, Aanicai R, Akay Tayfun G, Al Saman A, Alswaid A, Amiri N, Asilova N, Shotelersuk V, Yeetong P, Azam M, Babaei M, Bahrami Monajemi G, Mohammadi P, Samie S, Banu SH, Basto JP, Kortüm F, Bauer M, Bauer P, Beetz C, Garshasbi M, Hameed Issa A, Eyaid W, Ahmed H, Hashemi N, Hassanpour K, Herman I, Ibrohimov S, Abdul-Majeed BA, Imdad M, Isrofilov M, Kaiyal Q, Khan S, Kirmse B, Koster J, Lourenço CM, Mitani T, Moldovan O, Murphy D, Najafi M, Pehlivan D, Rocha ME, Salpietro V, Schmidts M, Shalata A, Mahroum M, Talbeya JK, Taylor RW, Vazquez D, Vetro A, Waterham HR, Zaman M, Schrader TA, Chung WK, Guerrini R, Lupski JR, Gleeson J, Suri M, Jamshidi Y, Bhatia KP, Vona B, Schrader M, Severino M, Guille M, Tate EW, Varshney GK, Houlden H, Maroofian R.
Brain. 2023 Nov 10:awad380. doi: 10.1093/brain/awad380. Online ahead of print.
ABSTRACT
The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins, and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Utilizing exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with YnMyr chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), with ages ranging from 1 to 50 years old, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%), and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%), and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%), and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each), as well as hypertrophy of the clava (24%) were common neuroimaging findings. acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism, and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localisation and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-Myristoylation was similarly affected in acbd6-deficient zebrafish and Xenopus tropicalis models, including Fus, Marcks, and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.
PMID:
37951597 | DOI:
10.1093/brain/awad380
October 13, 2023
Neurogenomics
Biallelic loss-of-function variants in WBP4, encoding a spliceosome protein, result in a variable neurodevelopmental syndrome
Engal E, Oja KT, Maroofian R, Geminder O, Le TL, Marzin P, Guimier A, Mor E, Zvi N, Elefant N, Zaki MS, Gleeson JG, Muru K, Pajusalu S, Wojcik MH, Pachat D, Elmaksoud MA, Chan Jeong W, Lee H, Bauer P, Zifarelli G, Houlden H, Daana M, Elpeleg O, Amiel J, Lyonnet S, Gordon CT, Harel T, Õunap K, Salton M, Mor-Shaked H.
Am J Hum Genet. 2023 Nov 7:S0002-9297(23)00366-X. doi: 10.1016/j.ajhg.2023.10.013. Online ahead of print.
ABSTRACT
Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that biallelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.
PMID:
37963460 | DOI:
10.1016/j.ajhg.2023.10.013
October 13, 2023
Neurogenomics
Exome copy number variant detection, analysis and classification in a large cohort of families with undiagnosed rare genetic disease
Lemire G, Sanchis-Juan A, Russell K, Baxter S, Chao KR, Singer-Berk M, Groopman E, Wong I, England E, Goodrich J, Pais L, Austin-Tse C, DiTroia S, O’Heir E, Ganesh VS, Wojcik MH, Evangelista E, Snow H, Osei-Owusu I, Fu J, Singh M, Mostovoy Y, Huang S, Garimella K, Kirkham SL, Neil JE, Shao DD, Walsh CA, Argili E, Le C, Sherr EH, Gleeson J, Shril S, Schneider R, Hildebrandt F, Sankaran VG, Madden JA, Genetti CA, Beggs AH, Agrawal PB, Bujakowska KM, Place E, Pierce EA, Donkervoort S, Bönnemann CG, Gallacher L, Stark Z, Tan T, White SM, Töpf A, Straub V, Fleming MD, Pollak MR, Õunap K, Pajusalu S, Donald KA, Bruwer Z, Ravenscroft G, Laing NG, MacArthur DG, Rehm HL, Talkowski ME, Brand H, O’Donnell-Luria A.
medRxiv. 2023 Oct 5:2023.10.05.23296595. doi: 10.1101/2023.10.05.23296595. Preprint.
ABSTRACT
Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family’s CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.
PMID:
37873196 DOI:
10.1101/2023.10.05.23296595
October 5, 2023
Neurogenomics
Novel association of Dandy-Walker malformation with CAPN15 variants expands the phenotype of oculogastrointestinal neurodevelopmental syndrome
Beaman MM, Guidugli L, Hammer M, Barrows C, Gregor A, Lee S, Deak KL, McDonald MT, Jensen C, Zaki MS, Masri AT, Hobbs CA, Gleeson JG, Cohen JL.
Am J Med Genet A. 2023 Aug 19. doi: 10.1002/ajmg.a.63363. Online ahead of print.
ABSTRACT
Oculogastrointestinal neurodevelopmental syndrome has been described in seven previously published individuals who harbor biallelic pathogenic variants in the CAPN15 gene. Biallelic missense variants have been reported to demonstrate a phenotype of eye abnormalities and developmental delay, while biallelic loss of function variants exhibit phenotypes including microcephaly and craniofacial abnormalities, cardiac and genitourinary malformations, and abnormal neurologic activity. We report six individuals from three unrelated families harboring biallelic deleterious variants in CAPN15 with phenotypes overlapping those previously described for this disorder. Of the individuals affected, four demonstrate radiographic evidence of the classical triad of Dandy-Walker malformation including hypoplastic vermis, fourth ventricle enlargement, and torcular elevation. Cerebellar anomalies have not been previously reported in association with CAPN15-related disease. Here, we present three unrelated families with findings consistent with oculogastrointestinal neurodevelopmental syndrome and cerebellar pathology including Dandy-Walker malformation. To corroborate these novel clinical findings, we present supporting data from the mouse model suggesting an important role for this protein in normal cerebellar development. Our findings add six molecularly confirmed cases to the literature and additionally establish a new association of Dandy-Walker malformation with biallelic CAPN15 variants, thereby expanding the neurologic spectrum among patients affected by CAPN15-related disease.
PMID:
37596828 DOI:
10.1002/ajmg.a.63363
August 19, 2023
Neurogenomics
Lunapark deficiency leads to an autosomal recessive neurodevelopmental phenotype with a degenerative course, epilepsy and distinct brain anomalies
Accogli A, Zaki MS, Al-Owain M, Otaif MY, Jackson A, Argilli E, Chandler KE, De Goede CGEL, Cora T, Alvi JR, Eslahi A, Asl Mohajeri MS, Ashtiani S, Au PYB, Scocchia A, Alakurtti K, Pagnamenta AT, Toosi MB, Karimiani EG, Mojarrad M, Arab F, Duymuş F, Scantlebury MH, Yeşil G, Rosenfeld JA, Türkyılmaz A, Sağer SG, Sultan T, Ashrafzadeh F, Zahra T, Rahman F, Maqbool S, Abdel-Hamid MS, Issa MY, Efthymiou S, Bauer P, Zifarelli G, Salpietro V, Al-Hassnan Z, Banka S, Sherr EH, Gleeson JG, Striano P, Houlden H, Severino M, Maroofian R.
Brain Commun. 2023 Aug 17;5(5):fcad222. doi: 10.1093/braincomms/fcad222. eCollection 2023.
ABSTRACT
LNPK encodes a conserved membrane protein that stabilizes the junctions of the tubular endoplasmic reticulum network playing crucial roles in diverse biological functions. Recently, homozygous variants in LNPK were shown to cause a neurodevelopmental disorder (OMIM#618090) in four patients displaying developmental delay, epilepsy and nonspecific brain malformations including corpus callosum hypoplasia and variable impairment of cerebellum. We sought to delineate the molecular and phenotypic spectrum of LNPK-related disorder. Exome or genome sequencing was carried out in 11 families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals, including review of previously reported patients. We identified 12 distinct homozygous loss-of-function variants in 16 individuals presenting with moderate to profound developmental delay, cognitive impairment, regression, refractory epilepsy and a recognizable neuroimaging pattern consisting of corpus callosum hypoplasia and signal alterations of the forceps minor (‘ear-of-the-lynx’ sign), variably associated with substantia nigra signal alterations, mild brain atrophy, short midbrain and cerebellar hypoplasia/atrophy. In summary, we define the core phenotype of LNPK-related disorder and expand the list of neurological disorders presenting with the ‘ear-of-the-lynx’ sign suggesting a possible common underlying mechanism related to endoplasmic reticulum-phagy dysfunction.
PMID:
37794925 PMC:
PMC10546953
August 17, 2023
Neurogenomics
Biallelic MED27 variants lead to variable ponto-cerebello-lental degeneration with movement disorders
Maroofian R, Kaiyrzhanov R, Cali E, Zamani M, Zaki MS, Ferla M, Tortora D, Sadeghian S, Saadi SM, Abdullah U, Ghayoor Karimiani E, Efthymiou S, Yeşil G, Alavi S, Al Shamsi AM, Tajsharghi H, Abdel-Hamid MS, Saadi NW, Al Mutairi F, Alabdi L, Beetz C, Ali Z, Toosi MB, Rudnik-Schöneborn S, Babaei M, Isohanni P, Muhammad J, Sheraz K, Al Shalan M, Hickey SE, Marom D, Elhanan E, Kurian MA, Marafi D, Saberi A, Hamid M, Spaull R, Meng L, Lalani S, Maqbool S, Rahman F, Seeger J, Palculict TB, Lau T, Murphy D, Mencacci NE, Steindl K, Begemann A, Rauch A, Akbas S, Dilruba AA, Salpietro V, Yousaf H, Ben-Shachar S, Ejeskär K, Al Aqeel AI, High FA, Armstrong-Javors AE, Zahraei SM, Seifi T, Zeighami J, Shariati G, Sedaghat A, Asl SN, Shahrooei M, Zifarelli G, Burglen L, Ravelli C, Zschocke J, Schatz UA, Ghavideldarestani M, Kamel WA, Van Esch H, Hackenberg A, Taylor JC, Al-Gazali L, Bauer P, Gleeson JJ, Alkuraya FS, Lupski JR, Galehdari H, Azizimalamiri R, Chung WK, Baig SM, Houlden H, Severino M.
Brain. 2023 Jul 30:awad257. doi: 10.1093/brain/awad257. Online ahead of print.
ABSTRACT
MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts, and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Utilizing exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17±12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinestic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterised by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%), and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%), and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations, and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of “neuro-MEDopathies”.
PMID:
37517035 DOI:
10.1093/brain/awad257
July 30, 2023
Neurogenomics
SLC4A10 mutation causes a neurological disorder associated with impaired GABAergic transmission
Fasham J, Huebner AK, Liebmann L, Khalaf-Nazzal R, Maroofian R, Kryeziu N, Wortmann SB, Leslie JS, Ubeyratna N, Mancini GMS, van Slegtenhorst M, Wilke M, Haack TB, Shamseldin H, Gleeson JG, Almuhaizea M, Dweikat I, Abu-Libdeh B, Daana M, Zaki MS, Wakeling MN, McGavin L, Turnpenny PD, Alkuraya FS, Houlden H, Schlattmann P, Kaila K, Crosby AH, Baple EL, Hübner CA.
Brain. 2023 Jul 17:awad235. doi: 10.1093/brain/awad235. Online ahead of print.
ABSTRACT
SLC4A10 is a plasma-membrane bound transporter which utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of cerebrospinal fluid. Using next generation sequencing on samples from five unrelated families encompassing ten affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and typically severe intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorders including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes ‘slit-like’ lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioral abnormalities including delayed habituation and alterations in the 2-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggests an important role of SLC4A10 in the production of the cerebrospinal fluid. However, it is notable that despite diverse roles of the cerebrospinal fluid in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel characteristic neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.
PMID:
37459438 DOI:
10.1093/brain/awad235
July 17, 2023
Neurogenomics
Biallelic loss of function variants in WBP4 , encoding a spliceosome protein, result in a variable neurodevelopmental delay syndrome
Engal E, Oja KT, Maroofian R, Geminder O, Le TL, Mor E, Tzvi N, Elefant N, Zaki MS, Gleeson JG, Muru K, Pajusalu S, Wojcik MH, Pachat D, Elmaksoud MA, Jeong WC, Lee H, Bauer P, Zifarelli G, Houlden H, Elpeleg O, Gordon C, Harel T, Õunap K, Salton M, Mor-Shaked H.
medRxiv. 2023 Jun 27:2023.06.19.23291425. doi: 10.1101/2023.06.19.23291425. Preprint.
ABSTRACT
Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WBP4 (WW Domain Binding Protein 4) is part of the early spliceosomal complex, and was not described before in the context of human pathologies. Ascertained through GeneMatcher we identified eleven patients from eight families, with a severe neurodevelopmental syndrome with variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal and gastrointestinal abnormalities. Genetic analysis revealed overall five different homozygous loss-of-function variants in WBP4 . Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including enrichment for abnormalities of the nervous system and musculoskeletal system genes, suggesting that the overlapping differentially spliced genes are related to the common phenotypes of the probands. We conclude that biallelic variants in WBP4 cause a spliceosomopathy. Further functional studies are called for better understanding of the mechanism of pathogenicity.
PMID:
37425688 DOI:
10.1101/2023.06.19.23291425
June 27, 2023
Neurogenomics
BRAT1-related disorders: phenotypic spectrum and phenotype-genotype correlations from 97 patients
Engel C, Valence S, Delplancq G, Maroofian R, Accogli A, Agolini E, Alkuraya FS, Baglioni V, Bagnasco I, Becmeur-Lefebvre M, Bertini E, Borggraefe I, Brischoux-Boucher E, Bruel AL, Brusco A, Bubshait DK, Cabrol C, Cilio MR, Cornet MC, Coubes C, Danhaive O, Delague V, Denommé-Pichon AS, Di Giacomo MC, Doco-Fenzy M, Engels H, Cremer K, Gérard M, Gleeson JG, Heron D, Goffeney J, Guimier A, Harms FL, Houlden H, Iacomino M, Kaiyrzhanov R, Kamien B, Karimiani EG, Kraus D, Kuentz P, Kutsche K, Lederer D, Massingham L, Mignot C, Morris-Rosendahl D, Nagarajan L, Odent S, Ormières C, Partlow JN, Pasquier L, Penney L, Philippe C, Piccolo G, Poulton C, Putoux A, Rio M, Rougeot C, Salpietro V, Scheffer I, Schneider A, Srivastava S, Straussberg R, Striano P, Valente EM, Venot P, Villard L, Vitobello A, Wagner J, Wagner M, Zaki MS, Zara F, Lesca G, Yassaee VR, Miryounesi M, Hashemi-Gorji F, Beiraghi M, Ashrafzadeh F, Galehdari H, Walsh C, Novelli A, Tacke M, Sadykova D, Maidyrov Y, Koneev K, Shashkin C, Capra V, Zamani M, Van Maldergem L, Burglen L, Piard J.
Eur J Hum Genet. 2023 Jun 21. doi: 10.1038/s41431-023-01410-z. Online ahead of print.
ABSTRACT
BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).
PMID:
37344571 DOI:
10.1038/s41431-023-01410-z
June 21, 2023
Neurogenomics